(* Title: nominal_dt_alpha.ML
Author: Christian Urban
Author: Cezary Kaliszyk
Deriving support propoerties for the quotient types.
*)
signature NOMINAL_DT_SUPP =
sig
val prove_supports: Proof.context -> thm list -> term list -> thm list
val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list
val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->
local_theory -> local_theory
val prove_fv_supp: typ list -> term list -> term list -> term list -> term list -> thm list ->
thm list -> thm list -> thm list -> thm -> bclause list list -> Proof.context -> thm list
val prove_bns_finite: typ list -> term list -> thm -> thm list -> Proof.context -> thm list
val prove_perm_bn_alpha_thms: typ list -> term list -> term list -> thm -> thm list -> thm list ->
thm list -> Proof.context -> thm list
end
structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
struct
(* supports lemmas for constructors *)
fun mk_supports_goal ctxt qtrm =
let
val vs = fresh_args ctxt qtrm
val rhs = list_comb (qtrm, vs)
val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
|> mk_supp
in
mk_supports lhs rhs
|> HOLogic.mk_Trueprop
end
fun supports_tac ctxt perm_simps =
let
val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
in
EVERY' [ simp_tac ss1,
Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
simp_tac ss2 ]
end
fun prove_supports_single ctxt perm_simps qtrm =
let
val goal = mk_supports_goal ctxt qtrm
val ctxt' = Variable.auto_fixes goal ctxt
in
Goal.prove ctxt' [] [] goal
(K (HEADGOAL (supports_tac ctxt perm_simps)))
|> singleton (ProofContext.export ctxt' ctxt)
end
fun prove_supports ctxt perm_simps qtrms =
map (prove_supports_single ctxt perm_simps) qtrms
(* finite supp lemmas for qtypes *)
fun prove_fsupp ctxt qtys qinduct qsupports_thms =
let
val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
val goals = vs ~~ qtys
|> map Free
|> map (mk_finite o mk_supp)
|> foldr1 (HOLogic.mk_conj)
|> HOLogic.mk_Trueprop
val tac =
EVERY' [ rtac @{thm supports_finite},
resolve_tac qsupports_thms,
asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
in
Goal.prove ctxt' [] [] goals
(K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
|> singleton (ProofContext.export ctxt' ctxt)
|> Datatype_Aux.split_conj_thm
|> map zero_var_indexes
end
(* finite supp instances *)
fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
let
val lthy1 =
lthy
|> Local_Theory.exit_global
|> Class.instantiation (qfull_ty_names, tvs, @{sort fs})
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac qfsupp_thms))
in
lthy1
|> Class.prove_instantiation_exit tac
|> Named_Target.theory_init
end
(* proves that fv and fv_bn equals supp *)
fun gen_mk_goals fv supp =
let
val arg_ty =
fastype_of fv
|> domain_type
in
(arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x))
end
fun mk_fvs_goals fv = gen_mk_goals fv mk_supp
fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn)
fun add_ss thms =
HOL_basic_ss addsimps thms
fun symmetric thms =
map (fn thm => thm RS @{thm sym}) thms
val supp_Abs_set = @{thms supp_Abs(1)[symmetric]}
val supp_Abs_res = @{thms supp_Abs(2)[symmetric]}
val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]}
fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set
| mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res
| mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst
fun mk_supp_abs_tac ctxt [] = []
| mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
| mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
fun mk_bn_supp_abs_tac trm =
trm
|> fastype_of
|> body_type
|> (fn ty => case ty of
@{typ "atom set"} => simp_tac (add_ss supp_Abs_set)
| @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst)
| _ => raise TERM ("mk_bn_supp_abs_tac", [trm]))
val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def
prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI}
fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps
fv_bn_eqvts qinduct bclausess ctxt =
let
val goals1 = map mk_fvs_goals fvs
val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns
fun tac ctxt =
SUBGOAL (fn (goal, i) =>
let
val (fv_fun, arg) =
goal |> Envir.eta_contract
|> Logic.strip_assums_concl
|> HOLogic.dest_Trueprop
|> fst o HOLogic.dest_eq
|> dest_comb
val supp_abs_tac =
case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of
SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses)
| NONE => mk_bn_supp_abs_tac fv_fun
in
EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
TRY o supp_abs_tac,
TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
TRY o asm_full_simp_tac (add_ss thms3),
TRY o simp_tac (add_ss thms2),
TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i
end)
in
induct_prove qtys (goals1 @ goals2) qinduct tac ctxt
|> map atomize
|> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]}))
end
fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt =
let
fun mk_goal qbn =
let
val arg_ty = domain_type (fastype_of qbn)
val finite = @{term "finite :: atom set => bool"}
in
(arg_ty, fn x => finite $ (to_set (qbn $ x)))
end
val props = map mk_goal qbns
val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @
@{thms set.simps set_append finite_insert finite.emptyI finite_Un}))
in
induct_prove qtys props qinduct (K ss_tac) ctxt
end
fun prove_perm_bn_alpha_thms qtys qperm_bns alpha_bns qinduct qperm_bn_simps qeq_iffs qalpha_refls ctxt =
let
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
fun mk_goal qperm_bn alpha_bn =
let
val arg_ty = domain_type (fastype_of alpha_bn)
in
(arg_ty, fn x => (mk_id (Abs ("", arg_ty, alpha_bn $ Bound 0 $ (qperm_bn $ p $ Bound 0)))) $ x)
end
val props = map2 mk_goal qperm_bns alpha_bns
val ss_tac = (K (print_tac "test")) THEN'
asm_full_simp_tac (HOL_ss addsimps (@{thm id_def}::qperm_bn_simps @ qeq_iffs @ qalpha_refls))
in
induct_prove qtys props qinduct (K ss_tac) ctxt'
|> ProofContext.export ctxt' ctxt
|> map (simplify (HOL_basic_ss addsimps @{thms id_def}))
end
end (* structure *)