More experiments with higher order quotients and theorems with non-lifted constants.
(* Code for getting the goal *)
apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *}
section {* Infrastructure about definitions *}
(* Does the same as 'subst' in a given theorem *)
ML {*
fun eqsubst_thm ctxt thms thm =
let
val goalstate = Goal.init (Thm.cprop_of thm)
val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
NONE => error "eqsubst_thm"
| SOME th => cprem_of th 1
val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1
val goal = Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a');
val cgoal = cterm_of (ProofContext.theory_of ctxt) goal
val rt = Goal.prove_internal [] cgoal (fn _ => tac);
in
@{thm equal_elim_rule1} OF [rt, thm]
end
*}
(* expects atomized definitions *)
ML {*
fun add_lower_defs_aux lthy thm =
let
val e1 = @{thm fun_cong} OF [thm];
val f = eqsubst_thm lthy @{thms fun_map.simps} e1;
val g = simp_ids f
in
(simp_ids thm) :: (add_lower_defs_aux lthy g)
end
handle _ => [simp_ids thm]
*}
ML {*
fun add_lower_defs lthy def =
let
val def_pre_sym = symmetric def
val def_atom = atomize_thm def_pre_sym
val defs_all = add_lower_defs_aux lthy def_atom
in
map Thm.varifyT defs_all
end
*}
ML {*
fun repeat_eqsubst_thm ctxt thms thm =
repeat_eqsubst_thm ctxt thms (eqsubst_thm ctxt thms thm)
handle _ => thm
*}
ML {*
fun eqsubst_prop ctxt thms t =
let
val goalstate = Goal.init (cterm_of (ProofContext.theory_of ctxt) t)
val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
NONE => error "eqsubst_prop"
| SOME th => cprem_of th 1
in term_of a' end
*}
ML {*
fun repeat_eqsubst_prop ctxt thms t =
repeat_eqsubst_prop ctxt thms (eqsubst_prop ctxt thms t)
handle _ => t
*}
text {* tyRel takes a type and builds a relation that a quantifier over this
type needs to respect. *}
ML {*
fun tyRel ty rty rel lthy =
if Sign.typ_instance (ProofContext.theory_of lthy) (ty, rty)
then rel
else (case ty of
Type (s, tys) =>
let
val tys_rel = map (fn ty => ty --> ty --> @{typ bool}) tys;
val ty_out = ty --> ty --> @{typ bool};
val tys_out = tys_rel ---> ty_out;
in
(case (maps_lookup (ProofContext.theory_of lthy) s) of
SOME (info) => list_comb (Const (#relfun info, tys_out),
map (fn ty => tyRel ty rty rel lthy) tys)
| NONE => HOLogic.eq_const ty
)
end
| _ => HOLogic.eq_const ty)
*}
(*
ML {* cterm_of @{theory}
(tyRel @{typ "'a \<Rightarrow> 'a list \<Rightarrow> 't \<Rightarrow> 't"} (Logic.varifyT @{typ "'a list"})
@{term "f::('a list \<Rightarrow> 'a list \<Rightarrow> bool)"} @{context})
*}
*)
ML {*
fun mk_babs ty ty' = Const (@{const_name "Babs"}, [ty' --> @{typ bool}, ty] ---> ty)
fun mk_ball ty = Const (@{const_name "Ball"}, [ty, ty] ---> @{typ bool})
fun mk_bex ty = Const (@{const_name "Bex"}, [ty, ty] ---> @{typ bool})
fun mk_resp ty = Const (@{const_name Respects}, [[ty, ty] ---> @{typ bool}, ty] ---> @{typ bool})
*}
(* applies f to the subterm of an abstractions, otherwise to the given term *)
ML {*
fun apply_subt f trm =
case trm of
Abs (x, T, t) =>
let
val (x', t') = Term.dest_abs (x, T, t)
in
Term.absfree (x', T, f t')
end
| _ => f trm
*}
(* FIXME: if there are more than one quotient, then you have to look up the relation *)
ML {*
fun my_reg lthy rel rty trm =
case trm of
Abs (x, T, t) =>
if (needs_lift rty T) then
let
val rrel = tyRel T rty rel lthy
in
(mk_babs (fastype_of trm) T) $ (mk_resp T $ rrel) $ (apply_subt (my_reg lthy rel rty) trm)
end
else
Abs(x, T, (apply_subt (my_reg lthy rel rty) t))
| Const (@{const_name "All"}, ty) $ (t as Abs (x, T, _)) =>
let
val ty1 = domain_type ty
val ty2 = domain_type ty1
val rrel = tyRel T rty rel lthy
in
if (needs_lift rty T) then
(mk_ball ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t)
else
Const (@{const_name "All"}, ty) $ apply_subt (my_reg lthy rel rty) t
end
| Const (@{const_name "Ex"}, ty) $ (t as Abs (x, T, _)) =>
let
val ty1 = domain_type ty
val ty2 = domain_type ty1
val rrel = tyRel T rty rel lthy
in
if (needs_lift rty T) then
(mk_bex ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t)
else
Const (@{const_name "Ex"}, ty) $ apply_subt (my_reg lthy rel rty) t
end
| Const (@{const_name "op ="}, ty) $ t =>
if needs_lift rty (fastype_of t) then
(tyRel (fastype_of t) rty rel lthy) $ t (* FIXME: t should be regularised too *)
else Const (@{const_name "op ="}, ty) $ (my_reg lthy rel rty t)
| t1 $ t2 => (my_reg lthy rel rty t1) $ (my_reg lthy rel rty t2)
| _ => trm
*}
(* For polymorphic types we need to find the type of the Relation term. *)
(* TODO: we assume that the relation is a Constant. Is this always true? *)
ML {*
fun my_reg_inst lthy rel rty trm =
case rel of
Const (n, _) => Syntax.check_term lthy
(my_reg lthy (Const (n, dummyT)) (Logic.varifyT rty) trm)
*}
(*
ML {*
val r = Free ("R", dummyT);
val t = (my_reg_inst @{context} r @{typ "'a list"} @{term "\<forall>(x::'b list). P x"});
val t2 = Syntax.check_term @{context} t;
cterm_of @{theory} t2
*}
*)
text {* Assumes that the given theorem is atomized *}
ML {*
fun build_regularize_goal thm rty rel lthy =
Logic.mk_implies
((prop_of thm),
(my_reg_inst lthy rel rty (prop_of thm)))
*}
ML {*
fun regularize thm rty rel rel_eqv rel_refl lthy =
let
val goal = build_regularize_goal thm rty rel lthy;
fun tac ctxt =
(ObjectLogic.full_atomize_tac) THEN'
REPEAT_ALL_NEW (FIRST' [
rtac rel_refl,
atac,
rtac @{thm universal_twice},
(rtac @{thm impI} THEN' atac),
rtac @{thm implication_twice},
EqSubst.eqsubst_tac ctxt [0]
[(@{thm equiv_res_forall} OF [rel_eqv]),
(@{thm equiv_res_exists} OF [rel_eqv])],
(* For a = b \<longrightarrow> a \<approx> b *)
(rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
(rtac @{thm RIGHT_RES_FORALL_REGULAR})
]);
val cthm = Goal.prove lthy [] [] goal
(fn {context, ...} => tac context 1);
in
cthm OF [thm]
end
*}
(*consts Rl :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"
axioms Rl_eq: "EQUIV Rl"
quotient ql = "'a list" / "Rl"
by (rule Rl_eq)
ML {*
ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "'a list"}) (Logic.varifyT @{typ "'a ql"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"});
ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "nat \<times> nat"}) (Logic.varifyT @{typ "int"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"})
*}
*)
ML {*
(* returns all subterms where two types differ *)
fun diff (T, S) Ds =
case (T, S) of
(TVar v, TVar u) => if v = u then Ds else (T, S)::Ds
| (TFree x, TFree y) => if x = y then Ds else (T, S)::Ds
| (Type (a, Ts), Type (b, Us)) =>
if a = b then diffs (Ts, Us) Ds else (T, S)::Ds
| _ => (T, S)::Ds
and diffs (T::Ts, U::Us) Ds = diffs (Ts, Us) (diff (T, U) Ds)
| diffs ([], []) Ds = Ds
| diffs _ _ = error "Unequal length of type arguments"
*}
ML {*
fun build_repabs_term lthy thm consts rty qty =
let
(* TODO: The rty and qty stored in the quotient_info should
be varified, so this will soon not be needed *)
val rty = Logic.varifyT rty;
val qty = Logic.varifyT qty;
fun mk_abs tm =
let
val ty = fastype_of tm
in Syntax.check_term lthy ((get_fun_OLD absF (rty, qty) lthy ty) $ tm) end
fun mk_repabs tm =
let
val ty = fastype_of tm
in Syntax.check_term lthy ((get_fun_OLD repF (rty, qty) lthy ty) $ (mk_abs tm)) end
fun is_lifted_const (Const (x, _)) = member (op =) consts x
| is_lifted_const _ = false;
fun build_aux lthy tm =
case tm of
Abs (a as (_, vty, _)) =>
let
val (vs, t) = Term.dest_abs a;
val v = Free(vs, vty);
val t' = lambda v (build_aux lthy t)
in
if (not (needs_lift rty (fastype_of tm))) then t'
else mk_repabs (
if not (needs_lift rty vty) then t'
else
let
val v' = mk_repabs v;
(* TODO: I believe 'beta' is not needed any more *)
val t1 = (* Envir.beta_norm *) (t' $ v')
in
lambda v t1
end)
end
| x =>
case Term.strip_comb tm of
(Const(@{const_name Respects}, _), _) => tm
| (opp, tms0) =>
let
val tms = map (build_aux lthy) tms0
val ty = fastype_of tm
in
if (is_lifted_const opp andalso needs_lift rty ty) then
mk_repabs (list_comb (opp, tms))
else if ((Term.is_Free opp) andalso (length tms > 0) andalso (needs_lift rty ty)) then
mk_repabs (list_comb (opp, tms))
else if tms = [] then opp
else list_comb(opp, tms)
end
in
repeat_eqsubst_prop lthy @{thms id_def_sym}
(build_aux lthy (Thm.prop_of thm))
end
*}
text {* Builds provable goals for regularized theorems *}
ML {*
fun build_repabs_goal ctxt thm cons rty qty =
Logic.mk_equals ((Thm.prop_of thm), (build_repabs_term ctxt thm cons rty qty))
*}
ML {*
fun repabs lthy thm consts rty qty quot_thm reflex_thm trans_thm rsp_thms =
let
val rt = build_repabs_term lthy thm consts rty qty;
val rg = Logic.mk_equals ((Thm.prop_of thm), rt);
fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN'
(REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms));
val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1);
in
@{thm Pure.equal_elim_rule1} OF [cthm, thm]
end
*}
(* TODO: Check if it behaves properly with varifyed rty *)
ML {*
fun findabs_all rty tm =
case tm of
Abs(_, T, b) =>
let
val b' = subst_bound ((Free ("x", T)), b);
val tys = findabs_all rty b'
val ty = fastype_of tm
in if needs_lift rty ty then (ty :: tys) else tys
end
| f $ a => (findabs_all rty f) @ (findabs_all rty a)
| _ => [];
fun findabs rty tm = distinct (op =) (findabs_all rty tm)
*}
(* Currently useful only for LAMBDA_PRS *)
ML {*
fun make_simp_prs_thm lthy quot_thm thm typ =
let
val (_, [lty, rty]) = dest_Type typ;
val thy = ProofContext.theory_of lthy;
val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
val inst = [SOME lcty, NONE, SOME rcty];
val lpi = Drule.instantiate' inst [] thm;
val tac =
(compose_tac (false, lpi, 2)) THEN_ALL_NEW
(quotient_tac quot_thm);
val gc = Drule.strip_imp_concl (cprop_of lpi);
val t = Goal.prove_internal [] gc (fn _ => tac 1)
in
MetaSimplifier.rewrite_rule [@{thm eq_reflection} OF @{thms id_apply}] t
end
*}
ML {*
fun findallex_all rty qty tm =
case tm of
Const (@{const_name All}, T) $ (s as (Abs(_, _, b))) =>
let
val (tya, tye) = findallex_all rty qty s
in if needs_lift rty T then
((T :: tya), tye)
else (tya, tye) end
| Const (@{const_name Ex}, T) $ (s as (Abs(_, _, b))) =>
let
val (tya, tye) = findallex_all rty qty s
in if needs_lift rty T then
(tya, (T :: tye))
else (tya, tye) end
| Abs(_, T, b) =>
findallex_all rty qty (subst_bound ((Free ("x", T)), b))
| f $ a =>
let
val (a1, e1) = findallex_all rty qty f;
val (a2, e2) = findallex_all rty qty a;
in (a1 @ a2, e1 @ e2) end
| _ => ([], []);
*}
ML {*
fun findallex lthy rty qty tm =
let
val (a, e) = findallex_all rty qty tm;
val (ad, ed) = (map domain_type a, map domain_type e);
val (au, eu) = (distinct (op =) ad, distinct (op =) ed);
val (rty, qty) = (Logic.varifyT rty, Logic.varifyT qty)
in
(map (exchange_ty lthy rty qty) au, map (exchange_ty lthy rty qty) eu)
end
*}
ML {*
fun make_allex_prs_thm lthy quot_thm thm typ =
let
val (_, [lty, rty]) = dest_Type typ;
val thy = ProofContext.theory_of lthy;
val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
val inst = [NONE, SOME lcty];
val lpi = Drule.instantiate' inst [] thm;
val tac =
(compose_tac (false, lpi, 1)) THEN_ALL_NEW
(quotient_tac quot_thm);
val gc = Drule.strip_imp_concl (cprop_of lpi);
val t = Goal.prove_internal [] gc (fn _ => tac 1)
val t_noid = MetaSimplifier.rewrite_rule
[@{thm eq_reflection} OF @{thms id_apply}] t;
val t_sym = @{thm "HOL.sym"} OF [t_noid];
val t_eq = @{thm "eq_reflection"} OF [t_sym]
in
t_eq
end
*}
ML {*
fun lift_thm lthy qty qty_name rsp_thms defs rthm =
let
val _ = tracing ("raw theorem:\n" ^ Syntax.string_of_term lthy (prop_of rthm))
val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty;
val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name;
val consts = lookup_quot_consts defs;
val t_a = atomize_thm rthm;
val _ = tracing ("raw atomized theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_a))
val t_r = regularize t_a rty rel rel_eqv rel_refl lthy;
val _ = tracing ("regularised theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_r))
val t_t = repabs lthy t_r consts rty qty quot rel_refl trans2 rsp_thms;
val _ = tracing ("rep/abs injected theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_t))
val (alls, exs) = findallex lthy rty qty (prop_of t_a);
val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls
val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs
val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t
val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_a))
val abs = findabs rty (prop_of t_a);
val aps = findaps rty (prop_of t_a);
val app_prs_thms = map (applic_prs lthy rty qty absrep) aps;
val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs;
val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a;
val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_l))
val defs_sym = flat (map (add_lower_defs lthy) defs);
val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym;
val t_id = simp_ids lthy t_l;
val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_id))
val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id;
val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d0))
val t_d = repeat_eqsubst_thm lthy defs_sym t_d0;
val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d))
val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d;
val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_r))
val t_rv = ObjectLogic.rulify t_r
val _ = tracing ("lifted theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_rv))
in
Thm.varifyT t_rv
end
*}
ML {*
fun lift_thm_note qty qty_name rsp_thms defs thm name lthy =
let
val lifted_thm = lift_thm lthy qty qty_name rsp_thms defs thm;
val (_, lthy2) = note (name, lifted_thm) lthy;
in
lthy2
end
*}
ML {*
fun regularize_goal lthy thm rel_eqv rel_refl qtrm =
let
val reg_trm = mk_REGULARIZE_goal lthy (prop_of thm) qtrm;
fun tac lthy = regularize_tac lthy rel_eqv rel_refl;
val cthm = Goal.prove lthy [] [] reg_trm
(fn {context, ...} => tac context 1);
in
cthm OF [thm]
end
*}
ML {*
fun repabs_goal lthy thm rty quot_thm reflex_thm trans_thm rsp_thms qtrm =
let
val rg = Syntax.check_term lthy (mk_inj_REPABS_goal lthy ((prop_of thm), qtrm));
fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN'
(REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms));
val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1);
in
@{thm Pure.equal_elim_rule1} OF [cthm, thm]
end
*}
ML {*
fun atomize_goal thy gl =
let
val vars = map Free (Term.add_frees gl []);
val all = if fastype_of gl = @{typ bool} then HOLogic.all_const else Term.all;
fun lambda_all (var as Free(_, T)) trm = (all T) $ lambda var trm;
val glv = fold lambda_all vars gl
val gla = (term_of o snd o Thm.dest_equals o cprop_of) (ObjectLogic.atomize (cterm_of thy glv))
val glf = Type.legacy_freeze gla
in
if fastype_of gl = @{typ bool} then @{term Trueprop} $ glf else glf
end
*}
ML {* atomize_goal @{theory} @{term "x memb [] = False"} *}
ML {* atomize_goal @{theory} @{term "x = xa ? a # x = a # xa"} *}
ML {*
fun applic_prs lthy absrep (rty, qty) =
let
fun mk_rep (T, T') tm = (Quotient_Def.get_fun repF lthy (T, T')) $ tm;
fun mk_abs (T, T') tm = (Quotient_Def.get_fun absF lthy (T, T')) $ tm;
val (raty, rgty) = Term.strip_type rty;
val (qaty, qgty) = Term.strip_type qty;
val vs = map (fn _ => "x") qaty;
val ((fname :: vfs), lthy') = Variable.variant_fixes ("f" :: vs) lthy;
val f = Free (fname, qaty ---> qgty);
val args = map Free (vfs ~~ qaty);
val rhs = list_comb(f, args);
val largs = map2 mk_rep (raty ~~ qaty) args;
val lhs = mk_abs (rgty, qgty) (list_comb((mk_rep (raty ---> rgty, qaty ---> qgty) f), largs));
val llhs = Syntax.check_term lthy lhs;
val eq = Logic.mk_equals (llhs, rhs);
val ceq = cterm_of (ProofContext.theory_of lthy') eq;
val sctxt = HOL_ss addsimps (@{thms fun_map.simps id_simps} @ absrep);
val t = Goal.prove_internal [] ceq (fn _ => simp_tac sctxt 1)
val t_id = MetaSimplifier.rewrite_rule @{thms id_simps} t;
in
singleton (ProofContext.export lthy' lthy) t_id
end
*}
ML {*
fun find_aps_all rtm qtm =
case (rtm, qtm) of
(Abs(_, T1, s1), Abs(_, T2, s2)) =>
find_aps_all (subst_bound ((Free ("x", T1)), s1)) (subst_bound ((Free ("x", T2)), s2))
| (((f1 as (Free (_, T1))) $ a1), ((f2 as (Free (_, T2))) $ a2)) =>
let
val sub = (find_aps_all f1 f2) @ (find_aps_all a1 a2)
in
if T1 = T2 then sub else (T1, T2) :: sub
end
| ((f1 $ a1), (f2 $ a2)) => (find_aps_all f1 f2) @ (find_aps_all a1 a2)
| _ => [];
fun find_aps rtm qtm = distinct (op =) (find_aps_all rtm qtm)
*}
ML {*
fun lift_thm_goal lthy qty qty_name rsp_thms defs rthm goal =
let
val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty;
val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name;
val t_a = atomize_thm rthm;
val goal_a = atomize_goal (ProofContext.theory_of lthy) goal;
val t_r = regularize_goal lthy t_a rel_eqv rel_refl goal_a;
val t_t = repabs_goal lthy t_r rty quot rel_refl trans2 rsp_thms goal_a;
val (alls, exs) = findallex lthy rty qty (prop_of t_a);
val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls
val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs
val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t
val abs = findabs rty (prop_of t_a);
val aps = findaps rty (prop_of t_a);
val app_prs_thms = map (applic_prs lthy rty qty absrep) aps;
val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs;
val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a;
val defs_sym = flat (map (add_lower_defs lthy) defs);
val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym;
val t_id = simp_ids lthy t_l;
val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id;
val t_d = repeat_eqsubst_thm lthy defs_sym t_d0;
val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d;
val t_rv = ObjectLogic.rulify t_r
in
Thm.varifyT t_rv
end
*}
ML {*
fun lift_thm_goal_note lthy qty qty_name rsp_thms defs thm name goal =
let
val lifted_thm = lift_thm_goal lthy qty qty_name rsp_thms defs thm goal;
val (_, lthy2) = note (name, lifted_thm) lthy;
in
lthy2
end
*}
ML {*
fun simp_ids_trm trm =
trm |>
MetaSimplifier.rewrite false @{thms eq_reflection[OF FUN_MAP_I] eq_reflection[OF id_apply] id_def_sym prod_fun_id map_id}
|> cprop_of |> Thm.dest_equals |> snd
*}