Nominal/Rsp.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 25 Mar 2010 17:30:46 +0100
changeset 1650 4b949985cf57
parent 1623 b63e85d36715
child 1653 a2142526bb01
permissions -rw-r--r--
Gathering things to prove by induction together; removed cheat_bn_eqvt.

theory Rsp
imports Abs
begin

ML {*
fun define_quotient_type args tac ctxt =
let
  val mthd = Method.SIMPLE_METHOD tac
  val mthdt = Method.Basic (fn _ => mthd)
  val bymt = Proof.global_terminal_proof (mthdt, NONE)
in
  bymt (Quotient_Type.quotient_type args ctxt)
end
*}

ML {*
fun const_rsp lthy const =
let
  val nty = fastype_of (Quotient_Term.quotient_lift_const ("", const) lthy)
  val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
in
  HOLogic.mk_Trueprop (rel $ const $ const)
end
*}

(* Replaces bounds by frees and meta implications by implications *)
ML {*
fun prepare_goal trm =
let
  val vars = strip_all_vars trm
  val fs = rev (map Free vars)
  val (fixes, no_alls) = ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
  val prems = map HOLogic.dest_Trueprop (Logic.strip_imp_prems no_alls)
  val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl no_alls)
in
  (fixes, fold (curry HOLogic.mk_imp) prems concl)
end
*}

ML {*
fun get_rsp_goal thy trm =
let
  val goalstate = Goal.init (cterm_of thy trm);
  val tac = REPEAT o rtac @{thm fun_rel_id};
in
  case (SINGLE (tac 1) goalstate) of
    NONE => error "rsp_goal failed"
  | SOME th => prepare_goal (term_of (cprem_of th 1))
end
*}

ML {*
fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm
*}

ML {*
fun prove_const_rsp bind consts tac ctxt =
let
  val rsp_goals = map (const_rsp ctxt) consts
  val thy = ProofContext.theory_of ctxt
  val (fixed, user_goals) = split_list (map (get_rsp_goal thy) rsp_goals)
  val fixed' = distinct (op =) (flat fixed)
  val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
  val user_thm = Goal.prove ctxt fixed' [] user_goal tac
  val user_thms = map repeat_mp (HOLogic.conj_elims user_thm)
  fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' resolve_tac user_thms THEN_ALL_NEW atac) 1
  val rsp_thms = map (fn gl => Goal.prove ctxt [] [] gl tac) rsp_goals
in
   ctxt
|> snd o Local_Theory.note 
  ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), rsp_thms)
|> Local_Theory.note ((bind, []), user_thms)
end
*}

ML {*
fun ind_tac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct
*}

ML {*
fun fvbv_rsp_tac induct fvbv_simps ctxt =
  ind_tac induct THEN_ALL_NEW
  (TRY o rtac @{thm TrueI}) THEN_ALL_NEW
  asm_full_simp_tac (HOL_basic_ss addsimps @{thms alpha_gen2}) THEN_ALL_NEW
  asm_full_simp_tac (HOL_ss addsimps (@{thm alpha_gen} :: fvbv_simps)) THEN_ALL_NEW
  REPEAT o eresolve_tac [conjE, exE] THEN_ALL_NEW
  asm_full_simp_tac (HOL_ss addsimps fvbv_simps) THEN_ALL_NEW
  TRY o blast_tac (claset_of ctxt)
*}

ML {*
fun sym_eqvts ctxt = map (fn x => sym OF [x]) (Nominal_ThmDecls.get_eqvts_thms ctxt)
fun all_eqvts ctxt =
  Nominal_ThmDecls.get_eqvts_thms ctxt @ Nominal_ThmDecls.get_eqvts_raw_thms ctxt
val split_conjs = REPEAT o etac conjE THEN' TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)
*}

ML {*
fun constr_rsp_tac inj rsp =
  REPEAT o rtac impI THEN'
  simp_tac (HOL_ss addsimps inj) THEN' split_conjs THEN_ALL_NEW
  (asm_simp_tac HOL_ss THEN_ALL_NEW (
   REPEAT o rtac @{thm exI[of _ "0 :: perm"]} THEN_ALL_NEW
   simp_tac (HOL_basic_ss addsimps @{thms alpha_gen2}) THEN_ALL_NEW
   asm_full_simp_tac (HOL_ss addsimps (rsp @
     @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv add_0_left}))
  ))
*}

(* Testing code
local_setup {* snd o prove_const_rsp @{binding fv_rtrm2_rsp} [@{term rbv2}]
  (fn _ => fv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms fv_rtrm2_fv_rassign.simps} 1) *}*)

(*ML {*
  val rsp_goals = map (const_rsp @{context}) [@{term rbv2}]
  val (fixed, user_goals) = split_list (map (get_rsp_goal @{theory}) rsp_goals)
  val fixed' = distinct (op =) (flat fixed)
  val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
*}
prove ug: {* user_goal *}
ML_prf {*
val induct = @{thm alpha_rtrm2_alpha_rassign.inducts(2)}
val fv_simps = @{thms rbv2.simps}
*} 
*)

ML {*
fun perm_arg arg =
let
  val ty = fastype_of arg
in
  Const (@{const_name permute}, @{typ perm} --> ty --> ty)
end

val perm_at = @{term "permute :: perm \<Rightarrow> atom set \<Rightarrow> atom set"}
*}

lemma exi: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (pi \<bullet> p)) \<Longrightarrow> \<exists>pi. Q pi"
apply (erule exE)
apply (rule_tac x="pi \<bullet> pia" in exI)
by auto


ML {*
fun mk_minimal_ss ctxt =
  Simplifier.context ctxt empty_ss
    setsubgoaler asm_simp_tac
    setmksimps (mksimps [])
*}

ML {*
fun alpha_eqvt_tac induct simps ctxt =
  ind_tac induct THEN_ALL_NEW
  simp_tac ((mk_minimal_ss ctxt) addsimps simps) THEN_ALL_NEW
  REPEAT o etac @{thm exi[of _ _ "p"]} THEN' split_conjs THEN_ALL_NEW
  asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ simps)) THEN_ALL_NEW
  asm_full_simp_tac (HOL_ss addsimps 
    @{thms supp_eqvt[symmetric] inter_eqvt[symmetric] empty_eqvt alpha_gen}) THEN_ALL_NEW
  (split_conjs THEN_ALL_NEW TRY o resolve_tac
    @{thms fresh_star_permute_iff[of "- p", THEN iffD1] permute_eq_iff[of "- p", THEN iffD1]})
  THEN_ALL_NEW
  asm_full_simp_tac (HOL_ss addsimps (@{thms split_conv permute_minus_cancel permute_plus permute_eqvt[symmetric]} @ all_eqvts ctxt @ simps))
*}

ML {*
fun build_alpha_eqvt alpha names =
let
  val pi = Free ("p", @{typ perm});
  val (tys, _) = strip_type (fastype_of alpha)
  val indnames = Name.variant_list names (Datatype_Prop.make_tnames (map body_type tys));
  val args = map Free (indnames ~~ tys);
  val perm_args = map (fn x => perm_arg x $ pi $ x) args
in
  (HOLogic.mk_imp (list_comb (alpha, args), list_comb (alpha, perm_args)), indnames @ names)
end
*}

ML {* fold_map build_alpha_eqvt *}

ML {*
fun build_alpha_eqvts funs tac ctxt =
let
  val (gls, names) = fold_map build_alpha_eqvt funs ["p"]
  val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj gls)
  val thm = Goal.prove ctxt names [] gl tac
in
  map (fn x => mp OF [x]) (HOLogic.conj_elims thm)
end
*}

ML {*
fun prove_fv_rsp fv_alphas_lst all_alphas tac ctxt =
let
  val (fvs_alphas, ls) = split_list fv_alphas_lst;
  val (fv_ts, alpha_ts) = split_list fvs_alphas;
  val tys = map (domain_type o fastype_of) alpha_ts;
  val names = Datatype_Prop.make_tnames tys;
  val names2 = Name.variant_list names names;
  val args = map Free (names ~~ tys);
  val args2 = map Free (names2 ~~ tys);
  fun mk_fv_rsp arg arg2 (fv, alpha) = HOLogic.mk_eq ((fv $ arg), (fv $ arg2));
  fun fv_rsp_arg (((fv, alpha), (arg, arg2)), l) =
    HOLogic.mk_imp (
     (alpha $ arg $ arg2),
     (foldr1 HOLogic.mk_conj
       (HOLogic.mk_eq (fv $ arg, fv $ arg2) ::
       (map (mk_fv_rsp arg arg2) l))));
  val nobn_eqs = map fv_rsp_arg (((fv_ts ~~ alpha_ts) ~~ (args ~~ args2)) ~~ ls);
  fun mk_fv_rsp_bn arg arg2 (fv, alpha) =
    HOLogic.mk_imp (
      (alpha $ arg $ arg2),
      HOLogic.mk_eq ((fv $ arg), (fv $ arg2)));
  fun fv_rsp_arg_bn ((arg, arg2), l) =
    map (mk_fv_rsp_bn arg arg2) l;
  val bn_eqs = flat (map fv_rsp_arg_bn ((args ~~ args2) ~~ ls));
  val (_, add_alphas) = chop (length (nobn_eqs @ bn_eqs)) all_alphas;
  val atys = map (domain_type o fastype_of) add_alphas;
  val anames = Name.variant_list (names @ names2) (Datatype_Prop.make_tnames atys);
  val aargs = map Free (anames ~~ atys);
  val aeqs = map2 (fn alpha => fn arg => HOLogic.mk_imp (alpha $ arg $ arg, @{term True}))
    add_alphas aargs;
  val eq = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (nobn_eqs @ bn_eqs @ aeqs));
  val th = Goal.prove ctxt (names @ names2) [] eq tac;
  val ths = HOLogic.conj_elims th;
  val (ths_nobn, ths_bn) = chop (length ls) ths;
  fun project (th, l) =
    Project_Rule.projects ctxt (1 upto (length l + 1)) (hd (Project_Rule.projections ctxt th))
  val ths_nobn_pr = map project (ths_nobn ~~ ls);
in
  (flat ths_nobn_pr @ ths_bn)
end
*}

lemma equivp_rspl:
  "equivp r \<Longrightarrow> r a b \<Longrightarrow> r a c = r b c"
  unfolding equivp_reflp_symp_transp symp_def transp_def 
  by blast

lemma equivp_rspr:
  "equivp r \<Longrightarrow> r a b \<Longrightarrow> r c a = r c b"
  unfolding equivp_reflp_symp_transp symp_def transp_def 
  by blast

ML {*
fun prove_alpha_bn_rsp alphas inducts exhausts inj_dis equivps ctxt (alpha_bn, n) =
let
  val alpha = nth alphas n;
  val ty = domain_type (fastype_of alpha);
  val ([x, y, a], ctxt') = Variable.variant_fixes ["x","y","a"] ctxt;
  val [l, r] = map (fn x => (Free (x, ty))) [x, y]
  val lhs = HOLogic.mk_Trueprop (alpha $ l $ r)
  val g1 =
    Logic.mk_implies (lhs,
      HOLogic.mk_Trueprop (HOLogic.mk_all (a, ty,
        HOLogic.mk_eq (alpha_bn $ l $ Bound 0, alpha_bn $ r $ Bound 0))));
  val g2 =
    Logic.mk_implies (lhs,
      HOLogic.mk_Trueprop (HOLogic.mk_all (a, ty,
        HOLogic.mk_eq (alpha_bn $ Bound 0 $ l, alpha_bn $ Bound 0 $ r))));
  val resl = map (fn x => @{thm equivp_rspl} OF [x]) equivps;
  val resr = map (fn x => @{thm equivp_rspr} OF [x]) equivps;
  fun tac {context, ...} = (
    etac (nth inducts n) THEN_ALL_NEW
    (TRY o rtac @{thm TrueI}) THEN_ALL_NEW rtac allI THEN_ALL_NEW
    split_conjs THEN_ALL_NEW
    InductTacs.case_rule_tac context a (nth exhausts n) THEN_ALL_NEW
    asm_full_simp_tac (HOL_ss addsimps inj_dis) THEN_ALL_NEW
    TRY o REPEAT_ALL_NEW (rtac @{thm arg_cong2[of _ _ _ _ "op \<and>"]}) THEN_ALL_NEW
    TRY o eresolve_tac (resl @ resr) THEN_ALL_NEW
    asm_full_simp_tac (HOL_ss addsimps inj_dis)
  ) 1;
  val t1 = Goal.prove ctxt [] [] g1 tac;
  val t2 = Goal.prove ctxt [] [] g2 tac;
in
  Variable.export ctxt' ctxt [t1, t2]
end
*}


end