Replies to questions from the weekend: Uncommenting the renamed theorem commented out in 734.
theory FSet3
imports "../QuotMain" List
begin
fun
list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "\<approx>" 50)
where
"list_eq xs ys = (\<forall>e. (e \<in> set xs) = (e \<in> set ys))"
lemma list_eq_equivp:
shows "equivp list_eq"
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
by auto
quotient fset = "'a list" / "list_eq"
by (rule list_eq_equivp)
lemma not_nil_equiv_cons:
"\<not>[] \<approx> a # A"
by auto
lemma nil_rsp[quot_respect]:
shows "[] \<approx> []"
by simp
lemma cons_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) op # op #"
by simp
(*
lemma mem_rsp[quot_respect]:
"(op = ===> op \<approx> ===> op =) (op mem) (op mem)"
*)
lemma no_mem_nil:
"(\<forall>a. a \<notin> set A) = (A = [])"
by (induct A) (auto)
lemma none_mem_nil:
"(\<forall>a. a \<notin> set A) = (A \<approx> [])"
by simp
lemma mem_cons:
"a \<in> set A \<Longrightarrow> a # A \<approx> A"
by auto
lemma cons_left_comm:
"x #y # A \<approx> y # x # A"
by auto
lemma cons_left_idem:
"x # x # A \<approx> x # A"
by auto
lemma finite_set_raw_strong_cases:
"(X = []) \<or> (\<exists>a Y. ((a \<notin> set Y) \<and> (X \<approx> a # Y)))"
apply (induct X)
apply (simp)
apply (rule disjI2)
apply (erule disjE)
apply (rule_tac x="a" in exI)
apply (rule_tac x="[]" in exI)
apply (simp)
apply (erule exE)+
apply (case_tac "a = aa")
apply (rule_tac x="a" in exI)
apply (rule_tac x="Y" in exI)
apply (simp)
apply (rule_tac x="aa" in exI)
apply (rule_tac x="a # Y" in exI)
apply (auto)
done
fun
delete_raw :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list"
where
"delete_raw [] x = []"
| "delete_raw (a # A) x = (if (a = x) then delete_raw A x else a # (delete_raw A x))"
lemma mem_delete_raw:
"x \<in> set (delete_raw A a) = (x \<in> set A \<and> \<not>(x = a))"
by (induct A arbitrary: x a) (auto)
lemma mem_delete_raw_ident:
"\<not>(a \<in> set (delete_raw A a))"
by (induct A) (auto)
lemma not_mem_delete_raw_ident:
"b \<notin> set A \<Longrightarrow> (delete_raw A b = A)"
by (induct A) (auto)
lemma delete_raw_RSP:
"A \<approx> B \<Longrightarrow> delete_raw A a \<approx> delete_raw B a"
apply(induct A arbitrary: B a)
apply(auto)
sorry
lemma cons_delete_raw:
"a # (delete_raw A a) \<approx> (if a \<in> set A then A else (a # A))"
sorry
lemma mem_cons_delete_raw:
"a \<in> set A \<Longrightarrow> a # (delete_raw A a) \<approx> A"
sorry
lemma finite_set_raw_delete_raw_cases:
"X = [] \<or> (\<exists>a. a mem X \<and> X \<approx> a # delete_raw X a)"
by (induct X) (auto)
fun
card_raw :: "'a list \<Rightarrow> nat"
where
card_raw_nil: "card_raw [] = 0"
| card_raw_cons: "card_raw (x # xs) = (if x \<in> set xs then card_raw xs else Suc (card_raw xs))"
lemma not_mem_card_raw:
fixes x :: "'a"
fixes xs :: "'a list"
shows "(\<not>(x mem xs)) = (card_raw (x # xs) = Suc (card_raw xs))"
sorry
lemma card_raw_suc:
assumes c: "card_raw xs = Suc n"
shows "\<exists>a ys. (a \<notin> set ys) \<and> xs \<approx> (a # ys)"
using c apply(induct xs)
apply(simp)
sorry
lemma mem_card_raw_gt_0:
"a \<in> set A \<Longrightarrow> 0 < card_raw A"
by (induct A) (auto)
lemma card_raw_cons_gt_0:
"0 < card_raw (a # A)"
by (induct A) (auto)
lemma card_raw_delete_raw:
"card_raw (delete_raw A a) = (if a \<in> set A then card_raw A - 1 else card_raw A)"
sorry
lemma card_raw_rsp_aux:
assumes e: "a \<approx> b"
shows "card_raw a = card_raw b"
using e sorry
lemma card_raw_rsp[quot_respect]:
"(op \<approx> ===> op =) card_raw card_raw"
by (simp add: card_raw_rsp_aux)
lemma card_raw_0:
"(card_raw A = 0) = (A = [])"
by (induct A) (auto)
lemma list2set_thm:
shows "set [] = {}"
and "set (h # t) = insert h (set t)"
by (auto)
lemma list2set_RSP:
"A \<approx> B \<Longrightarrow> set A = set B"
by auto
definition
rsp_fold
where
"rsp_fold f = (\<forall>u v w. (f u (f v w) = f v (f u w)))"
primrec
fold_raw :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
where
"fold_raw f z [] = z"
| "fold_raw f z (a # A) =
(if (rsp_fold f) then
if a mem A then fold_raw f z A
else f a (fold_raw f z A)
else z)"
lemma mem_lcommuting_fold_raw:
"rsp_fold f \<Longrightarrow> h mem B \<Longrightarrow> fold_raw f z B = f h (fold_raw f z (delete_raw B h))"
sorry
lemma fold_rsp[quot_respect]:
"(op = ===> op = ===> op \<approx> ===> op =) fold_raw fold_raw"
apply(auto)
sorry
lemma append_rsp[quot_respect]:
"(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by auto
primrec
inter_raw
where
"inter_raw [] B = []"
| "inter_raw (a # A) B = (if a mem B then a # inter_raw A B else inter_raw A B)"
lemma mem_inter_raw:
"x mem (inter_raw A B) = x mem A \<and> x mem B"
sorry
lemma inter_raw_RSP:
"A1 \<approx> A2 \<and> B1 \<approx> B2 \<Longrightarrow> (inter_raw A1 B1) \<approx> (inter_raw A2 B2)"
sorry
(* LIFTING DEFS *)
section {* Constants on the Quotient Type *}
quotient_def
"fempty :: 'a fset"
as "[]::'a list"
quotient_def
"finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
as "op #"
quotient_def
"fin :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ \<in>f _" [50, 51] 50)
as "\<lambda>x X. x \<in> set X"
abbreviation
fnotin :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ \<notin>f _" [50, 51] 50)
where
"a \<notin>f S \<equiv> \<not>(a \<in>f S)"
quotient_def
"fcard :: 'a fset \<Rightarrow> nat"
as "card_raw"
quotient_def
"fdelete :: 'a fset \<Rightarrow> 'a \<Rightarrow> 'a fset"
as "delete_raw"
quotient_def
"funion :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" ("_ \<union>f _" [50, 51] 50)
as "op @"
quotient_def
"finter :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" ("_ \<inter>f _" [70, 71] 70)
as "inter_raw"
quotient_def
"ffold :: ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b"
as "fold_raw"
quotient_def
"fset_to_set :: 'a fset \<Rightarrow> 'a set"
as "set"
section {* Lifted Theorems *}
thm list.cases (* ??? *)
thm cons_left_comm
lemma "finsert a (finsert b S) = finsert b (finsert a S)"
by (lifting cons_left_comm)
thm cons_left_idem
lemma "finsert a (finsert a S) = finsert a S"
by (lifting cons_left_idem)
(* thm MEM:
MEM x [] = F
MEM x (h::t) = (x=h) \/ MEM x t *)
thm none_mem_nil
(*lemma "(\<forall>a. a \<notin>f A) = (A = fempty)"*)
thm mem_cons
thm finite_set_raw_strong_cases
thm card_raw.simps
thm not_mem_card_raw
thm card_raw_suc
lemma "fcard X = Suc n \<Longrightarrow> (\<exists>a S. a \<notin>f S & X = finsert a S)"
(*by (lifting card_raw_suc)*)
sorry
thm card_raw_cons_gt_0
thm mem_card_raw_gt_0
thm not_nil_equiv_cons
thm delete_raw.simps
(*thm mem_delete_raw*)
thm card_raw_delete_raw
thm cons_delete_raw
thm mem_cons_delete_raw
thm finite_set_raw_delete_raw_cases
thm append.simps
(* MEM_APPEND: MEM e (APPEND l1 l2) = MEM e l1 \/ MEM e l2 *)
thm inter_raw.simps
thm mem_inter_raw
thm fold_raw.simps
thm list2set_thm
thm list_eq_def
thm list.induct
lemma "\<lbrakk>P fempty; \<And>a x. P x \<Longrightarrow> P (finsert a x)\<rbrakk> \<Longrightarrow> P l"
by (lifting list.induct)
(* We also have map and some properties of it in FSet *)
(* and the following which still lifts ok *)
lemma "funion (funion x xa) xb = funion x (funion xa xb)"
by (lifting append_assoc)
quotient_def
"fset_case :: 'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
as
"list_case"
(* NOT SURE IF TRUE *)
lemma list_case_rsp[quot_respect]:
"(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
apply (auto)
sorry
lemma "fset_case (f1::'t) f2 (finsert a xa) = f2 a xa"
apply (lifting list.cases(2))
done
end