completed the eqvt-proofs for functions; they are stored under the name function_name.eqvt and added to the eqvt-list
(* Nominal Mutual Functions
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 14 January 2011)
Mutual recursive nominal function definitions.
*)
signature NOMINAL_FUNCTION_MUTUAL =
sig
val prepare_nominal_function_mutual : Nominal_Function_Common.nominal_function_config
-> string (* defname *)
-> ((string * typ) * mixfix) list
-> term list
-> local_theory
-> ((thm (* goalstate *)
* (thm -> Nominal_Function_Common.nominal_function_result) (* proof continuation *)
) * local_theory)
end
structure Nominal_Function_Mutual: NOMINAL_FUNCTION_MUTUAL =
struct
open Function_Lib
open Function_Common
open Nominal_Function_Common
type qgar = string * (string * typ) list * term list * term list * term
datatype mutual_part = MutualPart of
{i : int,
i' : int,
fvar : string * typ,
cargTs: typ list,
f_def: term,
f: term option,
f_defthm : thm option}
datatype mutual_info = Mutual of
{n : int,
n' : int,
fsum_var : string * typ,
ST: typ,
RST: typ,
parts: mutual_part list,
fqgars: qgar list,
qglrs: ((string * typ) list * term list * term * term) list,
fsum : term option}
fun mutual_induct_Pnames n =
if n < 5 then fst (chop n ["P","Q","R","S"])
else map (fn i => "P" ^ string_of_int i) (1 upto n)
fun get_part fname =
the o find_first (fn (MutualPart {fvar=(n,_), ...}) => n = fname)
(* FIXME *)
fun mk_prod_abs e (t1, t2) =
let
val bTs = rev (map snd e)
val T1 = fastype_of1 (bTs, t1)
val T2 = fastype_of1 (bTs, t2)
in
HOLogic.pair_const T1 T2 $ t1 $ t2
end
fun analyze_eqs ctxt defname fs eqs =
let
val num = length fs
val fqgars = map (split_def ctxt (K true)) eqs
val arity_of = map (fn (fname,_,_,args,_) => (fname, length args)) fqgars
|> AList.lookup (op =) #> the
fun curried_types (fname, fT) =
let
val (caTs, uaTs) = chop (arity_of fname) (binder_types fT)
in
(caTs, uaTs ---> body_type fT)
end
val (caTss, resultTs) = split_list (map curried_types fs)
val argTs = map (foldr1 HOLogic.mk_prodT) caTss
val dresultTs = distinct (op =) resultTs
val n' = length dresultTs
val RST = Balanced_Tree.make (uncurry SumTree.mk_sumT) dresultTs
val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) argTs
val fsum_type = ST --> RST
val ([fsum_var_name], _) = Variable.add_fixes [ defname ^ "_sum" ] ctxt
val fsum_var = (fsum_var_name, fsum_type)
fun define (fvar as (n, _)) caTs resultT i =
let
val vars = map_index (fn (j,T) => Free ("x" ^ string_of_int j, T)) caTs (* FIXME: Bind xs properly *)
val i' = find_index (fn Ta => Ta = resultT) dresultTs + 1
val f_exp = SumTree.mk_proj RST n' i' (Free fsum_var $ SumTree.mk_inj ST num i (foldr1 HOLogic.mk_prod vars))
val def = Term.abstract_over (Free fsum_var, fold_rev lambda vars f_exp)
val rew = (n, fold_rev lambda vars f_exp)
in
(MutualPart {i=i, i'=i', fvar=fvar,cargTs=caTs,f_def=def,f=NONE,f_defthm=NONE}, rew)
end
val (parts, rews) = split_list (map4 define fs caTss resultTs (1 upto num))
fun convert_eqs (f, qs, gs, args, rhs) =
let
val MutualPart {i, i', ...} = get_part f parts
val rhs' = rhs
|> map_aterms (fn t as Free (n, _) => the_default t (AList.lookup (op =) rews n) | t => t)
in
(qs, gs, SumTree.mk_inj ST num i (foldr1 (mk_prod_abs qs) args),
Envir.beta_norm (SumTree.mk_inj RST n' i' rhs'))
end
val qglrs = map convert_eqs fqgars
in
Mutual {n=num, n'=n', fsum_var=fsum_var, ST=ST, RST=RST,
parts=parts, fqgars=fqgars, qglrs=qglrs, fsum=NONE}
end
fun define_projections fixes mutual fsum lthy =
let
fun def ((MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs, f_def, ...}), (_, mixfix)) lthy =
let
val ((f, (_, f_defthm)), lthy') =
Local_Theory.define
((Binding.name fname, mixfix),
((Binding.conceal (Binding.name (fname ^ "_def")), []),
Term.subst_bound (fsum, f_def))) lthy
in
(MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs=cargTs, f_def=f_def,
f=SOME f, f_defthm=SOME f_defthm },
lthy')
end
val Mutual { n, n', fsum_var, ST, RST, parts, fqgars, qglrs, ... } = mutual
val (parts', lthy') = fold_map def (parts ~~ fixes) lthy
in
(Mutual { n=n, n'=n', fsum_var=fsum_var, ST=ST, RST=RST, parts=parts',
fqgars=fqgars, qglrs=qglrs, fsum=SOME fsum },
lthy')
end
fun in_context ctxt (f, pre_qs, pre_gs, pre_args, pre_rhs) F =
let
val thy = ProofContext.theory_of ctxt
val oqnames = map fst pre_qs
val (qs, _) = Variable.variant_fixes oqnames ctxt
|>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs
fun inst t = subst_bounds (rev qs, t)
val gs = map inst pre_gs
val args = map inst pre_args
val rhs = inst pre_rhs
val cqs = map (cterm_of thy) qs
val ags = map (Thm.assume o cterm_of thy) gs
val import = fold Thm.forall_elim cqs
#> fold Thm.elim_implies ags
val export = fold_rev (Thm.implies_intr o cprop_of) ags
#> fold_rev forall_intr_rename (oqnames ~~ cqs)
in
F ctxt (f, qs, gs, args, rhs) import export
end
fun recover_mutual_psimp all_orig_fdefs parts ctxt (fname, _, _, args, rhs)
import (export : thm -> thm) sum_psimp_eq =
let
val (MutualPart {f=SOME f, ...}) = get_part fname parts
val psimp = import sum_psimp_eq
val (simp, restore_cond) =
case cprems_of psimp of
[] => (psimp, I)
| [cond] => (Thm.implies_elim psimp (Thm.assume cond), Thm.implies_intr cond)
| _ => raise General.Fail "Too many conditions"
in
Goal.prove ctxt [] []
(HOLogic.Trueprop $ HOLogic.mk_eq (list_comb (f, args), rhs))
(fn _ => (Local_Defs.unfold_tac ctxt all_orig_fdefs)
THEN EqSubst.eqsubst_tac ctxt [0] [simp] 1
THEN (simp_tac (simpset_of ctxt)) 1) (* FIXME: global simpset?!! *)
|> restore_cond
|> export
end
val inl_perm = @{lemma "x = Inl y ==> Sum_Type.Projl (permute p x) = permute p (Sum_Type.Projl x)" by simp}
val inr_perm = @{lemma "x = Inr y ==> Sum_Type.Projr (permute p x) = permute p (Sum_Type.Projr x)" by simp}
fun recover_mutual_eqvt eqvt_thm all_orig_fdefs parts ctxt (fname, _, _, args, _)
import (export : thm -> thm) sum_psimp_eq =
let
val (MutualPart {f=SOME f, ...}) = get_part fname parts
val psimp = import sum_psimp_eq
val (cond, simp, restore_cond) =
case cprems_of psimp of
[] => ([], psimp, I)
| [cond] => ([Thm.assume cond], Thm.implies_elim psimp (Thm.assume cond), Thm.implies_intr cond)
| _ => raise General.Fail "Too many conditions"
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
val ss = HOL_basic_ss addsimps
@{thms permute_sum.simps[symmetric] Pair_eqvt[symmetric]} @
@{thms Projr.simps Projl.simps} @
[(cond MRS eqvt_thm) RS @{thm sym}] @
[inl_perm, inr_perm, simp]
val goal_lhs = mk_perm p (list_comb (f, args))
val goal_rhs = list_comb (f, map (mk_perm p) args)
in
Goal.prove ctxt' [] [] (HOLogic.Trueprop $ HOLogic.mk_eq (goal_lhs, goal_rhs))
(fn _ => (Local_Defs.unfold_tac ctxt all_orig_fdefs)
THEN (asm_full_simp_tac ss 1))
|> singleton (ProofContext.export ctxt' ctxt)
|> restore_cond
|> export
end
fun mk_applied_form ctxt caTs thm =
let
val thy = ProofContext.theory_of ctxt
val xs = map_index (fn (i,T) => cterm_of thy (Free ("x" ^ string_of_int i, T))) caTs (* FIXME: Bind xs properly *)
in
fold (fn x => fn thm => Thm.combination thm (Thm.reflexive x)) xs thm
|> Conv.fconv_rule (Thm.beta_conversion true)
|> fold_rev Thm.forall_intr xs
|> Thm.forall_elim_vars 0
end
fun mutual_induct_rules lthy induct all_f_defs (Mutual {n, ST, parts, ...}) =
let
val cert = cterm_of (ProofContext.theory_of lthy)
val newPs =
map2 (fn Pname => fn MutualPart {cargTs, ...} =>
Free (Pname, cargTs ---> HOLogic.boolT))
(mutual_induct_Pnames (length parts)) parts
fun mk_P (MutualPart {cargTs, ...}) P =
let
val avars = map_index (fn (i,T) => Var (("a", i), T)) cargTs
val atup = foldr1 HOLogic.mk_prod avars
in
HOLogic.tupled_lambda atup (list_comb (P, avars))
end
val Ps = map2 mk_P parts newPs
val case_exp = SumTree.mk_sumcases HOLogic.boolT Ps
val induct_inst =
Thm.forall_elim (cert case_exp) induct
|> full_simplify SumTree.sumcase_split_ss
|> full_simplify (HOL_basic_ss addsimps all_f_defs)
fun project rule (MutualPart {cargTs, i, ...}) k =
let
val afs = map_index (fn (j,T) => Free ("a" ^ string_of_int (j + k), T)) cargTs (* FIXME! *)
val inj = SumTree.mk_inj ST n i (foldr1 HOLogic.mk_prod afs)
in
(rule
|> Thm.forall_elim (cert inj)
|> full_simplify SumTree.sumcase_split_ss
|> fold_rev (Thm.forall_intr o cert) (afs @ newPs),
k + length cargTs)
end
in
fst (fold_map (project induct_inst) parts 0)
end
fun forall_elim s (Const ("all", _) $ Abs (_, _, t)) = subst_bound (s, t)
| forall_elim _ t = t
val forall_elim_list = fold forall_elim
fun split_conj_thm th =
(split_conj_thm (th RS conjunct1)) @ (split_conj_thm (th RS conjunct2)) handle THM _ => [th];
fun prove_eqvt ctxt fs argTss eqvts_thms induct_thms =
let
fun aux argTs s = argTs
|> map (pair s)
|> Variable.variant_frees ctxt fs
val argss' = map2 aux argTss (Name.invent (Variable.names_of ctxt) "" (length fs))
val argss = (map o map) Free argss'
val arg_namess = (map o map) fst argss'
val insts = (map o map) SOME arg_namess
val ([p_name], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p_name, @{typ perm})
val acc_prems =
map prop_of induct_thms
|> map2 forall_elim_list argss
|> map (strip_qnt_body "all")
|> map (curry Logic.nth_prem 1)
|> map HOLogic.dest_Trueprop
fun mk_goal acc_prem (f, args) =
let
val goal_lhs = mk_perm p (list_comb (f, args))
val goal_rhs = list_comb (f, map (mk_perm p) args)
in
HOLogic.mk_imp (acc_prem, HOLogic.mk_eq (goal_lhs, goal_rhs))
end
val goal = fold_conj_balanced (map2 mk_goal acc_prems (fs ~~ argss))
|> HOLogic.mk_Trueprop
val induct_thm = case induct_thms of
[thm] => thm
|> Drule.gen_all
|> Thm.permute_prems 0 1
|> (fn thm => atomize_rule (length (prems_of thm) - 1) thm)
| thms => thms
|> map Drule.gen_all
|> map (Rule_Cases.add_consumes 1)
|> snd o Rule_Cases.strict_mutual_rule ctxt'
|> atomize_concl
fun tac thm = rtac (Drule.gen_all thm) THEN_ALL_NEW atac
in
Goal.prove ctxt' (flat arg_namess) [] goal
(fn {context, ...} => HEADGOAL (DETERM o (rtac induct_thm) THEN' RANGE (map tac eqvts_thms)))
|> singleton (ProofContext.export ctxt' ctxt)
|> split_conj_thm
|> map (fn th => th RS mp)
end
fun mk_partial_rules_mutual lthy inner_cont (m as Mutual {parts, fqgars, ...}) proof =
let
val result = inner_cont proof
val NominalFunctionResult {G, R, cases, psimps, simple_pinducts=[simple_pinduct],
termination, domintros, eqvts=[eqvt],...} = result
val (all_f_defs, fs) =
map (fn MutualPart {f_defthm = SOME f_def, f = SOME f, cargTs, ...} =>
(mk_applied_form lthy cargTs (Thm.symmetric f_def), f))
parts
|> split_list
val all_orig_fdefs =
map (fn MutualPart {f_defthm = SOME f_def, ...} => f_def) parts
val cargTss =
map (fn MutualPart {f = SOME f, cargTs, ...} => cargTs) parts
fun mk_mpsimp fqgar sum_psimp =
in_context lthy fqgar (recover_mutual_psimp all_orig_fdefs parts) sum_psimp
fun mk_meqvts fqgar sum_psimp =
in_context lthy fqgar (recover_mutual_eqvt eqvt all_orig_fdefs parts) sum_psimp
val rew_ss = HOL_basic_ss addsimps all_f_defs
val mpsimps = map2 mk_mpsimp fqgars psimps
val minducts = mutual_induct_rules lthy simple_pinduct all_f_defs m
val mtermination = full_simplify rew_ss termination
val mdomintros = Option.map (map (full_simplify rew_ss)) domintros
val meqvts = map2 mk_meqvts fqgars psimps
val meqvt_funs = prove_eqvt lthy fs cargTss meqvts minducts
in
NominalFunctionResult { fs=fs, G=G, R=R,
psimps=mpsimps, simple_pinducts=minducts,
cases=cases, termination=mtermination,
domintros=mdomintros, eqvts=meqvt_funs }
end
(* nominal *)
fun prepare_nominal_function_mutual config defname fixes eqss lthy =
let
val mutual as Mutual {fsum_var=(n, T), qglrs, ...} =
analyze_eqs lthy defname (map fst fixes) (map Envir.beta_eta_contract eqss)
val ((fsum, goalstate, cont), lthy') =
Nominal_Function_Core.prepare_nominal_function config defname [((n, T), NoSyn)] qglrs lthy
val (mutual', lthy'') = define_projections fixes mutual fsum lthy'
val mutual_cont = mk_partial_rules_mutual lthy'' cont mutual'
in
((goalstate, mutual_cont), lthy'')
end
end