theory Height
imports "Lambda"
begin
text {*
A small problem suggested by D. Wang. It shows how
the height of a lambda-terms behaves under substitution.
*}
lemma height_ge_one:
shows "1 \<le> (height e)"
by (induct e rule: lam.induct)
(simp_all)
theorem height_subst:
shows "height (e[x::=e']) \<le> height e - 1 + height e'"
proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have "1 \<le> height e'" using height_ge_one by simp
then show "height (Var y[x::=e']) \<le> height (Var y) - 1 + height e'" by simp
next
case (Lam y e1)
have ih: "height (e1[x::=e']) \<le> height e1 - 1 + height e'" by fact
moreover
have vc: "atom y \<sharp> x" "atom y \<sharp> e'" by fact+ (* usual variable convention *)
ultimately show "height ((Lam y e1)[x::=e']) \<le> height (Lam y e1) - 1 + height e'" by simp
next
case (App e1 e2)
have ih1: "height (e1[x::=e']) \<le> (height e1) - 1 + height e'"
and ih2: "height (e2[x::=e']) \<le> (height e2) - 1 + height e'" by fact+
then show "height ((App e1 e2)[x::=e']) \<le> height (App e1 e2) - 1 + height e'" by simp
qed
end