Nominal/Nominal2.thy
author Christian Urban <urbanc@in.tum.de>
Thu, 23 Dec 2010 00:22:41 +0000
changeset 2625 478c5648e73f
parent 2624 bfa48c000aa7
child 2626 d1bdc281be2b
permissions -rw-r--r--
moved generic functions into nominal_library

theory Nominal2
imports 
  Nominal2_Base Nominal2_Eqvt Nominal2_Abs
uses ("nominal_dt_rawfuns.ML")
     ("nominal_dt_alpha.ML")
     ("nominal_dt_quot.ML")
begin


use "nominal_dt_rawfuns.ML"
ML {* open Nominal_Dt_RawFuns *}

use "nominal_dt_alpha.ML"
ML {* open Nominal_Dt_Alpha *}

use "nominal_dt_quot.ML"
ML {* open Nominal_Dt_Quot *}

text {* TEST *}


ML {*
(* adds a freshness condition to the assumptions *)
fun mk_ecase_prems lthy c (params, prems, concl) bclauses =
  let
    val tys = map snd params
    val binders = get_all_binders bclauses
   
    fun prep_binder (opt, i) = 
      let
        val t = Bound (length tys - i - 1)
      in
        case opt of
          NONE => setify_ty lthy (nth tys i) t 
        | SOME bn => to_set_ty (fastype_of1 (tys, bn $ t)) (bn $ t)   
      end 

    val prems' = 
      case binders of
        [] => prems                        (* case: no binders *)
      | _ => binders                       (* case: binders *) 
          |> map prep_binder
          |> fold_union_env tys
          |> (fn t => mk_fresh_star t c)
          |> (fn t => HOLogic.mk_Trueprop t :: prems)
  in
    mk_full_horn params prems' concl
  end  
*}


ML {*
(* derives the freshness theorem that there exists a p, such that 
   (p o as) #* (c, t1,\<dots>, tn) *)
fun fresh_thm ctxt c parms binders bn_finite_thms =
  let
    fun prep_binder (opt, i) = 
      case opt of
        NONE => setify ctxt (nth parms i) 
      | SOME bn => to_set (bn $ (nth parms i))  

    fun prep_binder2 (opt, i) = 
      case opt of
        NONE => atomify ctxt (nth parms i)
      | SOME bn => bn $ (nth parms i) 

    val rhs = HOLogic.mk_tuple ([c] @ parms @ (map prep_binder2 binders))
    val lhs = binders
      |> map prep_binder
      |> fold_union
      |> mk_perm (Bound 0)

    val goal = mk_fresh_star lhs rhs
      |> (fn t => HOLogic.mk_exists ("p", @{typ perm}, t))
      |> HOLogic.mk_Trueprop   
 
    val ss = bn_finite_thms @ @{thms supp_Pair finite_supp finite_sets_supp} 
      @ @{thms finite.intros finite_Un finite_set finite_fset}  
  in
    Goal.prove ctxt [] [] goal
      (K (HEADGOAL (rtac @{thm at_set_avoiding1}
          THEN_ALL_NEW (simp_tac (HOL_ss addsimps ss)))))
  end
*} 

ML {*
fun abs_const bmode ty =
  let
    val (const_name, binder_ty, abs_ty) = 
      case bmode of
        Lst => (@{const_name "Abs_lst"}, @{typ "atom list"}, @{type_name abs_lst})
      | Set => (@{const_name "Abs_set"}, @{typ "atom set"},  @{type_name abs_set})
      | Res => (@{const_name "Abs_res"}, @{typ "atom set"},  @{type_name abs_res})
  in
    Const (const_name, [binder_ty, ty] ---> Type (abs_ty, [ty]))
  end

fun mk_abs bmode trm1 trm2 =
  abs_const bmode (fastype_of trm2) $ trm1 $ trm2  

fun is_abs_eq thm =
  let
    fun is_abs trm =
      case (head_of trm) of
        Const (@{const_name "Abs_set"}, _) => true
      | Const (@{const_name "Abs_lst"}, _) => true
      | Const (@{const_name "Abs_res"}, _) => true
      | _ => false
  in 
    thm |> prop_of 
        |> HOLogic.dest_Trueprop
        |> HOLogic.dest_eq
        |> fst
        |> is_abs
  end
*}



ML {*
(* derives an abs_eq theorem of the form 

   Exists q. [as].x = [p o as].(q o x)  for non-recursive binders 
   Exists q. [as].x = [q o as].(q o x)  for recursive binders
*)
fun abs_eq_thm ctxt fprops p parms bn_finite_thms bn_eqvt permute_bns
  (bclause as (BC (bmode, binders, bodies))) =
  case binders of
    [] => [] 
  | _ =>
      let
        val rec_flag = is_recursive_binder bclause
        val binder_trm = comb_binders ctxt bmode parms binders
        val body_trm = foldl1 HOLogic.mk_prod (map (nth parms) bodies)

        val abs_lhs = mk_abs bmode binder_trm body_trm
        val abs_rhs = 
          if rec_flag
          then mk_abs bmode (mk_perm (Bound 0) binder_trm) (mk_perm (Bound 0) body_trm)
          else mk_abs bmode (mk_perm p binder_trm) (mk_perm (Bound 0) body_trm)
        
        val abs_eq = HOLogic.mk_eq (abs_lhs, abs_rhs)
        val peq = HOLogic.mk_eq (mk_perm (Bound 0) binder_trm, mk_perm p binder_trm) 

        val goal = HOLogic.mk_conj (abs_eq, peq)
          |> (fn t => HOLogic.mk_exists ("q", @{typ "perm"}, t))
          |> HOLogic.mk_Trueprop  
 
        val ss = fprops @ bn_finite_thms @ @{thms set.simps set_append union_eqvt}
          @ @{thms fresh_star_Un fresh_star_Pair fresh_star_list fresh_star_singleton fresh_star_fset
          fresh_star_set} @ @{thms finite.intros finite_fset}
  
        val tac1 = 
          if rec_flag
          then resolve_tac @{thms Abs_rename_set' Abs_rename_res' Abs_rename_lst'}
          else resolve_tac @{thms Abs_rename_set  Abs_rename_res  Abs_rename_lst}
        
        val tac2 = EVERY' [simp_tac (HOL_basic_ss addsimps ss), TRY o simp_tac HOL_ss] 
     in
       [ Goal.prove ctxt [] [] goal (K (HEADGOAL (tac1 THEN_ALL_NEW tac2)))
         |> (if rec_flag
             then Nominal_Permeq.eqvt_strict_rule ctxt bn_eqvt []
             else Nominal_Permeq.eqvt_strict_rule ctxt permute_bns []) ]
     end
*}



lemma setify:
  shows "xs = ys \<Longrightarrow> set xs = set ys" 
  by simp

ML {*
fun case_tac ctxt c bn_finite_thms eq_iff_thms bn_eqvt permute_bns perm_bn_alphas 
  prems bclausess qexhaust_thm =
  let
    fun aux_tac prem bclauses =
      case (get_all_binders bclauses) of
        [] => EVERY' [rtac prem, atac]
      | binders => Subgoal.SUBPROOF (fn {params, prems, concl, context = ctxt, ...} =>  
          let
            val parms = map (term_of o snd) params
            val fthm = fresh_thm ctxt c parms binders bn_finite_thms 
  
            val ss = @{thms fresh_star_Pair union_eqvt fresh_star_Un}
            val (([(_, fperm)], fprops), ctxt') = Obtain.result
              (K (EVERY1 [etac exE, 
                          full_simp_tac (HOL_basic_ss addsimps ss), 
                          REPEAT o (etac @{thm conjE})])) [fthm] ctxt 
  
            val abs_eq_thms = flat 
             (map (abs_eq_thm ctxt fprops (term_of fperm) parms bn_finite_thms bn_eqvt permute_bns) bclauses)

            val ((_, eqs), ctxt'') = Obtain.result
              (K (EVERY1 
                   [ REPEAT o (etac @{thm exE}), 
                     REPEAT o (etac @{thm conjE}),
                     REPEAT o (dtac @{thm setify}),
                     full_simp_tac (HOL_basic_ss addsimps @{thms set_append set.simps})])) abs_eq_thms ctxt' 

            val (abs_eqs, peqs) = split_filter is_abs_eq eqs

            val fprops' = 
              map (Nominal_Permeq.eqvt_strict_rule ctxt permute_bns []) fprops
              @ map (Nominal_Permeq.eqvt_strict_rule ctxt bn_eqvt []) fprops

            (* for freshness conditions *) 
            val tac1 = SOLVED' (EVERY'
              [ simp_tac (HOL_basic_ss addsimps peqs),
                rewrite_goal_tac (@{thms fresh_star_Un[THEN eq_reflection]}),
                conj_tac (DETERM o resolve_tac fprops') ]) 

            (* for equalities between constructors *)
            val tac2 = SOLVED' (EVERY' 
              [ rtac (@{thm ssubst} OF prems),
                rewrite_goal_tac (map safe_mk_equiv eq_iff_thms),
                rewrite_goal_tac (map safe_mk_equiv abs_eqs),
                conj_tac (DETERM o resolve_tac (@{thms refl} @ perm_bn_alphas)) ]) 

            (* proves goal "P" *)
            val side_thm = Goal.prove ctxt'' [] [] (term_of concl)
              (K (EVERY1 [ rtac prem, RANGE [tac1, tac2] ]))
              |> singleton (ProofContext.export ctxt'' ctxt)  
          in
            rtac side_thm 1 
          end) ctxt
  in
    EVERY1 [rtac qexhaust_thm, RANGE (map2 aux_tac prems bclausess)]
  end
*}

ML {*
fun prove_strong_exhausts lthy exhausts bclausesss bn_finite_thms eq_iff_thms bn_eqvt permute_bns
  perm_bn_alphas =
  let
    val ((_, exhausts'), lthy') = Variable.import true exhausts lthy 

    val ([c, a], lthy'') = Variable.variant_fixes ["c", "'a"] lthy'
    val c = Free (c, TFree (a, @{sort fs}))

    val (ecases, main_concls) = exhausts' (* ecases are of the form (params, prems, concl) *)
      |> map prop_of
      |> map Logic.strip_horn
      |> split_list

    val ecases' = (map o map) strip_full_horn ecases

    val premss = (map2 o map2) (mk_ecase_prems lthy'' c) ecases' bclausesss
   
    fun tac bclausess exhaust {prems, context} =
      case_tac context c bn_finite_thms eq_iff_thms bn_eqvt permute_bns perm_bn_alphas 
        prems bclausess exhaust

    fun prove prems bclausess exhaust concl =
      Goal.prove lthy'' [] prems concl (tac bclausess exhaust)
  in
    map4 prove premss bclausesss exhausts' main_concls
    |> ProofContext.export lthy'' lthy
  end
*}



ML {*
val eqvt_attr = Attrib.internal (K Nominal_ThmDecls.eqvt_add)
val rsp_attr = Attrib.internal (K Quotient_Info.rsp_rules_add)
val simp_attr = Attrib.internal (K Simplifier.simp_add)
*}

section{* Interface for nominal_datatype *}

ML {* print_depth 50 *}

ML {*
fun get_cnstrs dts =
  map (fn (_, _, _, constrs) => constrs) dts

fun get_typed_cnstrs dts =
  flat (map (fn (_, bn, _, constrs) => 
   (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts)

fun get_cnstr_strs dts =
  map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts))

fun get_bn_fun_strs bn_funs =
  map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs
*}


text {* Infrastructure for adding "_raw" to types and terms *}

ML {*
fun add_raw s = s ^ "_raw"
fun add_raws ss = map add_raw ss
fun raw_bind bn = Binding.suffix_name "_raw" bn

fun replace_str ss s = 
  case (AList.lookup (op=) ss s) of 
     SOME s' => s'
   | NONE => s

fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts)
  | replace_typ ty_ss T = T  

fun raw_dts ty_ss dts =
let
  fun raw_dts_aux1 (bind, tys, mx) =
    (raw_bind bind, map (replace_typ ty_ss) tys, mx)

  fun raw_dts_aux2 (ty_args, bind, mx, constrs) =
    (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs)
in
  map raw_dts_aux2 dts
end

fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T)
  | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T)
  | replace_aterm trm_ss trm = trm

fun replace_term trm_ss ty_ss trm =
  trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) 
*}

ML {*
fun rawify_dts dt_names dts dts_env =
let
  val raw_dts = raw_dts dts_env dts
  val raw_dt_names = add_raws dt_names
in
  (raw_dt_names, raw_dts)
end 
*}

ML {*
fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs =
let
  val bn_funs' = map (fn (bn, ty, mx) => 
    (raw_bind bn, SOME (replace_typ dts_env ty), mx)) bn_funs
  
  val bn_eqs' = map (fn (attr, trm) => 
    (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs
in
  (bn_funs', bn_eqs') 
end 
*}

ML {* 
fun rawify_bclauses dts_env cnstrs_env bn_fun_env bclauses =
let
  fun rawify_bnds bnds = 
    map (apfst (Option.map (replace_term (cnstrs_env @ bn_fun_env) dts_env))) bnds

  fun rawify_bclause (BC (mode, bnds, bdys)) = BC (mode, rawify_bnds bnds, bdys)
in
  (map o map o map) rawify_bclause bclauses
end
*}


ML {*
fun define_raw_dts dts bn_funs bn_eqs bclauses lthy =
let
  val thy = Local_Theory.exit_global lthy
  val thy_name = Context.theory_name thy

  val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts
  val dt_full_names = map (Long_Name.qualify thy_name) dt_names 
  val dt_full_names' = add_raws dt_full_names
  val dts_env = dt_full_names ~~ dt_full_names'

  val cnstrs = get_cnstr_strs dts
  val cnstrs_ty = get_typed_cnstrs dts
  val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs
  val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name 
    (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty
  val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names'

  val bn_fun_strs = get_bn_fun_strs bn_funs
  val bn_fun_strs' = add_raws bn_fun_strs
  val bn_fun_env = bn_fun_strs ~~ bn_fun_strs'
  val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) 
    (bn_fun_strs ~~ bn_fun_strs')
  
  val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env
  val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs 
  val raw_bclauses = rawify_bclauses dts_env cnstrs_env bn_fun_full_env bclauses 

  val (raw_dt_full_names, thy1) = 
    Datatype.add_datatype Datatype.default_config raw_dt_names raw_dts thy

  val lthy1 = Named_Target.theory_init thy1
in
  (raw_dt_full_names, raw_dts, raw_bclauses, raw_bn_funs, raw_bn_eqs, lthy1)
end
*}

ML {*
(* for testing porposes - to exit the procedure early *)
exception TEST of Proof.context

val (STEPS, STEPS_setup) = Attrib.config_int "STEPS" (K 100);

fun get_STEPS ctxt = Config.get ctxt STEPS
*}


setup STEPS_setup

ML {*
fun nominal_datatype2 opt_thms_name dts bn_funs bn_eqs bclauses lthy =
let
  (* definition of the raw datatypes *)
  val _ = warning "Definition of raw datatypes";
  val (raw_dt_names, raw_dts, raw_bclauses, raw_bn_funs, raw_bn_eqs, lthy0) =
    if get_STEPS lthy > 0 
    then define_raw_dts dts bn_funs bn_eqs bclauses lthy
    else raise TEST lthy

  val dtinfo = Datatype.the_info (ProofContext.theory_of lthy0) (hd raw_dt_names)
  val {descr, sorts, ...} = dtinfo

  val raw_tys = all_dtyps descr sorts
  val raw_full_ty_names = map (fst o dest_Type) raw_tys
  val tvs = hd raw_tys
    |> snd o dest_Type
    |> map dest_TFree  

  val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy0)) raw_full_ty_names  
 
  val raw_cns_info = all_dtyp_constrs_types descr sorts
  val raw_constrs = (map o map) (fn (c, _, _, _) => c) raw_cns_info

  val raw_inject_thms = flat (map #inject dtinfos)
  val raw_distinct_thms = flat (map #distinct dtinfos)
  val raw_induct_thm = #induct dtinfo
  val raw_induct_thms = #inducts dtinfo
  val raw_exhaust_thms = map #exhaust dtinfos
  val raw_size_trms = map HOLogic.size_const raw_tys
  val raw_size_thms = Size.size_thms (ProofContext.theory_of lthy0) (hd raw_dt_names)
    |> `(fn thms => (length thms) div 2)
    |> uncurry drop
  
  (* definitions of raw permutations by primitive recursion *)
  val _ = warning "Definition of raw permutations";
  val ((raw_perm_funs, raw_perm_simps, raw_perm_laws), lthy2a) =
    if get_STEPS lthy0 > 0 
    then define_raw_perms raw_full_ty_names raw_tys tvs (flat raw_constrs) raw_induct_thm lthy0
    else raise TEST lthy0
 
  (* noting the raw permutations as eqvt theorems *)
  val (_, lthy3) = Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_perm_simps) lthy2a

  (* definition of raw fv and bn functions *)
  val _ = warning "Definition of raw fv- and bn-functions";
  val (raw_bns, raw_bn_defs, raw_bn_info, raw_bn_induct, lthy3a) =
    if get_STEPS lthy3 > 1
    then define_raw_bns raw_full_ty_names raw_dts raw_bn_funs raw_bn_eqs 
      (raw_inject_thms @ raw_distinct_thms) raw_size_thms lthy3
    else raise TEST lthy3

  (* defining the permute_bn functions *)
  val (raw_perm_bns, raw_perm_bn_simps, lthy3b) = 
    if get_STEPS lthy3a > 2
    then define_raw_bn_perms raw_tys raw_bn_info raw_cns_info 
      (raw_inject_thms @ raw_distinct_thms) raw_size_thms lthy3a
    else raise TEST lthy3a

  val (raw_fvs, raw_fv_bns, raw_fv_defs, raw_fv_bns_induct, lthy3c) = 
    if get_STEPS lthy3b > 3 
    then define_raw_fvs raw_full_ty_names raw_tys raw_cns_info raw_bn_info raw_bclauses 
      (raw_inject_thms @ raw_distinct_thms) raw_size_thms lthy3b
    else raise TEST lthy3b

  (* definition of raw alphas *)
  val _ = warning "Definition of alphas";
  val (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy4) =
    if get_STEPS lthy3c > 4 
    then define_raw_alpha raw_full_ty_names raw_tys raw_cns_info raw_bn_info raw_bclauses raw_fvs lthy3c
    else raise TEST lthy3c
  val alpha_tys = map (domain_type o fastype_of) alpha_trms  

  (* definition of alpha-distinct lemmas *)
  val _ = warning "Distinct theorems";
  val alpha_distincts = 
    mk_alpha_distincts lthy4 alpha_cases raw_distinct_thms alpha_trms raw_tys

  (* definition of alpha_eq_iff  lemmas *)
  val _ = warning "Eq-iff theorems";
  val alpha_eq_iff = 
    if get_STEPS lthy > 5
    then mk_alpha_eq_iff lthy4 alpha_intros raw_distinct_thms raw_inject_thms alpha_cases
    else raise TEST lthy4

  (* proving equivariance lemmas for bns, fvs, size and alpha *)
  val _ = warning "Proving equivariance";
  val raw_bn_eqvt = 
    if get_STEPS lthy > 6
    then raw_prove_eqvt raw_bns raw_bn_induct (raw_bn_defs @ raw_perm_simps) lthy4
    else raise TEST lthy4

  (* noting the raw_bn_eqvt lemmas in a temprorary theory *)
  val lthy_tmp = snd (Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_bn_eqvt) lthy4)

  val raw_fv_eqvt = 
    if get_STEPS lthy > 7
    then raw_prove_eqvt (raw_fvs @ raw_fv_bns) raw_fv_bns_induct (raw_fv_defs @ raw_perm_simps) 
      (Local_Theory.restore lthy_tmp)
    else raise TEST lthy4

  val raw_size_eqvt = 
    if get_STEPS lthy > 8
    then raw_prove_eqvt raw_size_trms raw_induct_thms (raw_size_thms @ raw_perm_simps) 
      (Local_Theory.restore lthy_tmp)
      |> map (rewrite_rule @{thms permute_nat_def[THEN eq_reflection]})
      |> map (fn thm => thm RS @{thm sym})
    else raise TEST lthy4
 
  val lthy5 = snd (Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_fv_eqvt) lthy_tmp)

  val (alpha_eqvt, lthy6) =
    if get_STEPS lthy > 9
    then Nominal_Eqvt.equivariance true (alpha_trms @ alpha_bn_trms) alpha_induct alpha_intros lthy5
    else raise TEST lthy4

  (* proving alpha equivalence *)
  val _ = warning "Proving equivalence"

  val alpha_refl_thms = 
    if get_STEPS lthy > 10
    then raw_prove_refl alpha_trms alpha_bn_trms alpha_intros raw_induct_thm lthy6 
    else raise TEST lthy6

  val alpha_sym_thms = 
    if get_STEPS lthy > 11
    then raw_prove_sym (alpha_trms @ alpha_bn_trms) alpha_intros alpha_induct lthy6 
    else raise TEST lthy6

  val alpha_trans_thms = 
    if get_STEPS lthy > 12
    then raw_prove_trans (alpha_trms @ alpha_bn_trms) (raw_distinct_thms @ raw_inject_thms) 
           alpha_intros alpha_induct alpha_cases lthy6
    else raise TEST lthy6

  val (alpha_equivp_thms, alpha_bn_equivp_thms) = 
    if get_STEPS lthy > 13
    then raw_prove_equivp alpha_trms alpha_bn_trms alpha_refl_thms alpha_sym_thms 
       alpha_trans_thms lthy6
    else raise TEST lthy6

  (* proving alpha implies alpha_bn *)
  val _ = warning "Proving alpha implies bn"

  val alpha_bn_imp_thms = 
    if get_STEPS lthy > 14
    then raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct lthy6 
    else raise TEST lthy6
  
  (* respectfulness proofs *)
  val raw_funs_rsp_aux = 
    if get_STEPS lthy > 15
    then raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms raw_fvs 
      raw_bns raw_fv_bns alpha_induct (raw_bn_defs @ raw_fv_defs) lthy6
    else raise TEST lthy6 
  
  val raw_funs_rsp = 
    if get_STEPS lthy > 16
    then map mk_funs_rsp raw_funs_rsp_aux
    else raise TEST lthy6 

  val raw_size_rsp = 
    if get_STEPS lthy > 17
    then
      raw_size_rsp_aux (alpha_trms @ alpha_bn_trms) alpha_induct 
      (raw_size_thms @ raw_size_eqvt) lthy6
      |> map mk_funs_rsp
    else raise TEST lthy6 

  val raw_constrs_rsp = 
    if get_STEPS lthy > 18
    then raw_constrs_rsp (flat raw_constrs) alpha_trms alpha_intros
      (alpha_bn_imp_thms @ raw_funs_rsp_aux) lthy6 
    else raise TEST lthy6 

  val alpha_permute_rsp = 
    if get_STEPS lthy > 19
    then map mk_alpha_permute_rsp alpha_eqvt
    else raise TEST lthy6 

  val alpha_bn_rsp = 
    if get_STEPS lthy > 20
    then raw_alpha_bn_rsp alpha_bn_trms alpha_bn_equivp_thms alpha_bn_imp_thms
    else raise TEST lthy6 

  val raw_perm_bn_rsp =
    if get_STEPS lthy > 21
    then raw_perm_bn_rsp (alpha_trms @ alpha_bn_trms) raw_perm_bns alpha_induct 
      alpha_intros raw_perm_bn_simps lthy6
    else raise TEST lthy6

  (* noting the quot_respects lemmas *)
  val (_, lthy6a) = 
    if get_STEPS lthy > 22
    then Local_Theory.note ((Binding.empty, [rsp_attr]),
      raw_constrs_rsp @ raw_funs_rsp @ raw_size_rsp @ alpha_permute_rsp @ 
      alpha_bn_rsp @ raw_perm_bn_rsp) lthy6
    else raise TEST lthy6

  (* defining the quotient type *)
  val _ = warning "Declaring the quotient types"
  val qty_descr = map (fn (vs, bind, mx, _) => (vs, bind, mx)) dts
     
  val (qty_infos, lthy7) = 
    if get_STEPS lthy > 23
    then define_qtypes qty_descr alpha_tys alpha_trms alpha_equivp_thms lthy6a
    else raise TEST lthy6a

  val qtys = map #qtyp qty_infos
  val qty_full_names = map (fst o dest_Type) qtys
  val qty_names = map Long_Name.base_name qty_full_names             

  (* defining of quotient term-constructors, binding functions, free vars functions *)
  val _ = warning "Defining the quotient constants"
  val qconstrs_descrs =
    (map2 o map2) (fn (b, _, mx) => fn t => (Name.of_binding b, t, mx)) (get_cnstrs dts) raw_constrs

  val qbns_descr =
    map2 (fn (b, _, mx) => fn t => (Name.of_binding b, t, mx)) bn_funs raw_bns

  val qfvs_descr = 
    map2 (fn n => fn t => ("fv_" ^ n, t, NoSyn)) qty_names raw_fvs

  val qfv_bns_descr = 
    map2 (fn (b, _, _) => fn t => ("fv_" ^ Name.of_binding b, t, NoSyn)) bn_funs raw_fv_bns

  val qalpha_bns_descr = 
    map2 (fn (b, _, _) => fn t => ("alpha_" ^ Name.of_binding b, t, NoSyn)) bn_funs  alpha_bn_trms

  val qperm_descr =
    map2 (fn n => fn t => ("permute_" ^ n, Type.legacy_freeze t, NoSyn)) qty_names raw_perm_funs

  val qsize_descr =
    map2 (fn n => fn t => ("size_" ^ n, t, NoSyn)) qty_names raw_size_trms

  val qperm_bn_descr = 
    map2 (fn (b, _, _) => fn t => ("permute_" ^ Name.of_binding b, t, NoSyn)) bn_funs raw_perm_bns
     
  val ((((((qconstrs_infos, qbns_info), qfvs_info), qfv_bns_info), qalpha_bns_info), qperm_bns_info), 
    lthy8) = 
    if get_STEPS lthy > 24
    then 
      lthy7
      |> fold_map (define_qconsts qtys) qconstrs_descrs 
      ||>> define_qconsts qtys qbns_descr 
      ||>> define_qconsts qtys qfvs_descr
      ||>> define_qconsts qtys qfv_bns_descr
      ||>> define_qconsts qtys qalpha_bns_descr
      ||>> define_qconsts qtys qperm_bn_descr
    else raise TEST lthy7

  (* definition of the quotient permfunctions and pt-class *)
  val lthy9 = 
    if get_STEPS lthy > 25
    then define_qperms qtys qty_full_names tvs qperm_descr raw_perm_laws lthy8 
    else raise TEST lthy8
  
  val lthy9a = 
    if get_STEPS lthy > 26
    then define_qsizes qtys qty_full_names tvs qsize_descr lthy9
    else raise TEST lthy9

  val qtrms = (map o map) #qconst qconstrs_infos
  val qbns = map #qconst qbns_info
  val qfvs = map #qconst qfvs_info
  val qfv_bns = map #qconst qfv_bns_info
  val qalpha_bns = map #qconst qalpha_bns_info
  val qperm_bns = map #qconst qperm_bns_info

  (* lifting of the theorems *)
  val _ = warning "Lifting of Theorems"
  
  val eq_iff_simps = @{thms alphas permute_prod.simps prod_fv.simps prod_alpha_def prod_rel_def
    prod.cases} 

  val ((((((qdistincts, qeq_iffs), qfv_defs), qbn_defs), qperm_simps), qfv_qbn_eqvts), lthyA) = 
    if get_STEPS lthy > 27
    then 
      lthy9a    
      |> lift_thms qtys [] alpha_distincts  
      ||>> lift_thms qtys eq_iff_simps alpha_eq_iff       
      ||>> lift_thms qtys [] raw_fv_defs
      ||>> lift_thms qtys [] raw_bn_defs
      ||>> lift_thms qtys [] raw_perm_simps
      ||>> lift_thms qtys [] (raw_fv_eqvt @ raw_bn_eqvt)
    else raise TEST lthy9a

  val ((((((qsize_eqvt, [qinduct]), qexhausts), qsize_simps), qperm_bn_simps), qalpha_refl_thms), lthyB) = 
    if get_STEPS lthy > 28
    then
      lthyA 
      |> lift_thms qtys [] raw_size_eqvt
      ||>> lift_thms qtys [] [raw_induct_thm]
      ||>> lift_thms qtys [] raw_exhaust_thms
      ||>> lift_thms qtys [] raw_size_thms
      ||>> lift_thms qtys [] raw_perm_bn_simps
      ||>> lift_thms qtys [] alpha_refl_thms
    else raise TEST lthyA

  val qinducts = Project_Rule.projections lthyA qinduct

  (* supports lemmas *) 
  val _ = warning "Proving Supports Lemmas and fs-Instances"
  val qsupports_thms =
    if get_STEPS lthy > 29
    then prove_supports lthyB qperm_simps (flat qtrms)
    else raise TEST lthyB

  (* finite supp lemmas *)
  val qfsupp_thms =
    if get_STEPS lthy > 30
    then prove_fsupp lthyB qtys qinduct qsupports_thms
    else raise TEST lthyB

  (* fs instances *)
  val lthyC =
    if get_STEPS lthy > 31
    then fs_instance qtys qty_full_names tvs qfsupp_thms lthyB
    else raise TEST lthyB

  (* fv - supp equality *)
  val _ = warning "Proving Equality between fv and supp"
  val qfv_supp_thms = 
    if get_STEPS lthy > 32
    then prove_fv_supp qtys (flat qtrms) qfvs qfv_bns qalpha_bns qfv_defs qeq_iffs 
      qperm_simps qfv_qbn_eqvts qinduct (flat raw_bclauses) lthyC
    else []

  (* postprocessing of eq and fv theorems *)

  val qeq_iffs' = qeq_iffs
    |> map (simplify (HOL_basic_ss addsimps qfv_supp_thms))
    |> map (simplify (HOL_basic_ss addsimps @{thms prod_fv_supp prod_alpha_eq Abs_eq_iff[symmetric]}))

  val qsupp_constrs = qfv_defs
    |> map (simplify (HOL_basic_ss addsimps (take (length qfvs) qfv_supp_thms)))

  val transform_thm = @{lemma "x = y \<Longrightarrow> a \<notin> x \<longleftrightarrow> a \<notin> y" by simp}
  val transform_thms = 
    [ @{lemma "a \<notin> (S \<union> T) \<longleftrightarrow> a \<notin> S \<and> a \<notin> T" by simp}, 
      @{lemma "a \<notin> (S - T) \<longleftrightarrow> a \<notin> S \<or> a \<in> T" by simp}, 
      @{lemma "(lhs = (a \<notin> {})) \<longleftrightarrow> lhs" by simp}, 
      @{thm fresh_def[symmetric]}]

  val qfresh_constrs = qsupp_constrs
    |> map (fn thm => thm RS transform_thm) 
    |> map (simplify (HOL_basic_ss addsimps transform_thms))

  (* proving that the qbn result is finite *)
  val qbn_finite_thms =
    if get_STEPS lthy > 33
    then prove_bns_finite qtys qbns qinduct qbn_defs lthyC
    else []

  (* proving that perm_bns preserve alpha *)
  val qperm_bn_alpha_thms = 
    if get_STEPS lthy > 33
    then prove_perm_bn_alpha_thms qtys qperm_bns qalpha_bns qinduct qperm_bn_simps qeq_iffs' 
      qalpha_refl_thms lthyC
    else []

  (* proving the relationship of bn and permute_bn *)
  val qpermute_bn_thms = 
    if get_STEPS lthy > 33
    then prove_permute_bn_thms qtys qbns qperm_bns qinduct qperm_bn_simps qbn_defs qfv_qbn_eqvts lthyC
    else []

  val qstrong_exhaust_thms = prove_strong_exhausts lthyC qexhausts bclauses qbn_finite_thms qeq_iffs'
    qfv_qbn_eqvts qpermute_bn_thms qperm_bn_alpha_thms


  (* noting the theorems *)  

  (* generating the prefix for the theorem names *)
  val thms_name = 
    the_default (Binding.name (space_implode "_" qty_names)) opt_thms_name 
  fun thms_suffix s = Binding.qualified true s thms_name 

  val (_, lthy9') = lthyC
     |> Local_Theory.note ((thms_suffix "distinct", []), qdistincts) 
     ||>> Local_Theory.note ((thms_suffix "eq_iff", []), qeq_iffs')
     ||>> Local_Theory.note ((thms_suffix "fv_defs", []), qfv_defs) 
     ||>> Local_Theory.note ((thms_suffix "bn_defs", []), qbn_defs) 
     ||>> Local_Theory.note ((thms_suffix "perm_simps", [eqvt_attr, simp_attr]), qperm_simps) 
     ||>> Local_Theory.note ((thms_suffix "fv_bn_eqvt", []), qfv_qbn_eqvts) 
     ||>> Local_Theory.note ((thms_suffix "size", []), qsize_simps)
     ||>> Local_Theory.note ((thms_suffix "size_eqvt", []), qsize_eqvt)
     ||>> Local_Theory.note ((thms_suffix "induct", []), [qinduct]) 
     ||>> Local_Theory.note ((thms_suffix "inducts", []), qinducts)
     ||>> Local_Theory.note ((thms_suffix "exhaust", []), qexhausts)
     ||>> Local_Theory.note ((thms_suffix "strong_exhaust", []), qstrong_exhaust_thms)
     ||>> Local_Theory.note ((thms_suffix "supports", []), qsupports_thms)
     ||>> Local_Theory.note ((thms_suffix "fsupp", []), qfsupp_thms)
     ||>> Local_Theory.note ((thms_suffix "supp", []), qsupp_constrs)
     ||>> Local_Theory.note ((thms_suffix "fresh", []), qfresh_constrs)
     ||>> Local_Theory.note ((thms_suffix "raw_alpha", []), alpha_intros)
     ||>> Local_Theory.note ((thms_suffix "perm_bn_simps", []), qperm_bn_simps)
     ||>> Local_Theory.note ((thms_suffix "bn_finite", []), qbn_finite_thms)
     ||>> Local_Theory.note ((thms_suffix "perm_bn_alpha", []), qperm_bn_alpha_thms)
     ||>> Local_Theory.note ((thms_suffix "permute_bn", []), qpermute_bn_thms)
in
  lthy9'
end handle TEST ctxt => ctxt
*}


section {* Preparing and parsing of the specification *}

ML {* 
(* generates the parsed datatypes and 
   declares the constructors 
*)
fun prepare_dts dt_strs thy = 
let
  fun inter_fs_sort thy (a, S) = 
    (a, Type.inter_sort (Sign.tsig_of thy) (@{sort fs}, S)) 

  fun mk_type tname sorts (cname, cargs, mx) =
  let
    val full_tname = Sign.full_name thy tname
    val ty = Type (full_tname, map (TFree o inter_fs_sort thy) sorts)
  in
    (cname, cargs ---> ty, mx)
  end

  fun prep_constr (cname, cargs, mx, _) (constrs, sorts) =
  let 
    val (cargs', sorts') = 
      fold_map (Datatype.read_typ thy) (map snd cargs) sorts
      |>> map (map_type_tfree (TFree o inter_fs_sort thy)) 
  in 
    (constrs @ [(cname, cargs', mx)], sorts') 
  end
  
  fun prep_dts (tvs, tname, mx, constrs) (constr_trms, dts, sorts) =
  let 
    val (constrs', sorts') = 
      fold prep_constr constrs ([], sorts)

    val constr_trms' = 
      map (mk_type tname (rev sorts')) constrs'
  in 
    (constr_trms @ constr_trms', dts @ [(tvs, tname, mx, constrs')], sorts') 
  end

  val (constr_trms, dts, sorts) = fold prep_dts dt_strs ([], [], []);
in
  thy
  |> Sign.add_consts_i constr_trms
  |> pair dts
end
*}

ML {*
(* parsing the binding function specification and *)
(* declaring the functions in the local theory    *)
fun prepare_bn_funs bn_fun_strs bn_eq_strs thy =
let
  val lthy = Named_Target.theory_init thy

  val ((bn_funs, bn_eqs), lthy') = 
    Specification.read_spec bn_fun_strs bn_eq_strs lthy

  fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) 
  
  val bn_funs' = map prep_bn_fun bn_funs
in
  (Local_Theory.exit_global lthy')
  |> Sign.add_consts_i bn_funs'
  |> pair (bn_funs', bn_eqs) 
end 
*}

text {* associates every SOME with the index in the list; drops NONEs *}
ML {*
fun indexify xs =
let
  fun mapp _ [] = []
    | mapp i (NONE :: xs) = mapp (i + 1) xs
    | mapp i (SOME x :: xs) = (x, i) :: mapp (i + 1) xs
in 
  mapp 0 xs 
end

fun index_lookup xs x =
  case AList.lookup (op=) xs x of
    SOME x => x
  | NONE => error ("Cannot find " ^ x ^ " as argument annotation.");
*}

ML {*
fun prepare_bclauses dt_strs thy = 
let
  val annos_bclauses =
    get_cnstrs dt_strs
    |> (map o map) (fn (_, antys, _, bns) => (map fst antys, bns))

  fun prep_binder env bn_str =
    case (Syntax.read_term_global thy bn_str) of
      Free (x, _) => (NONE, index_lookup env x)
    | Const (a, T) $ Free (x, _) => (SOME (Const (a, T)), index_lookup env x)
    | _ => error ("The term " ^ bn_str ^ " is not allowed as binding function.")
 
  fun prep_body env bn_str = index_lookup env bn_str

  fun prep_bclause env (mode, binders, bodies) = 
  let
    val binders' = map (prep_binder env) binders
    val bodies' = map (prep_body env) bodies
  in  
    BC (mode, binders', bodies')
  end

  fun prep_bclauses (annos, bclause_strs) = 
  let
    val env = indexify annos (* for every label, associate the index *)
  in
    map (prep_bclause env) bclause_strs
  end
in
  ((map o map) prep_bclauses annos_bclauses, thy)
end
*}

text {* 
  adds an empty binding clause for every argument
  that is not already part of a binding clause
*}

ML {*
fun included i bcs = 
let
  fun incl (BC (_, bns, bds)) = 
    member (op =) (map snd bns) i orelse member (op =) bds i
in
  exists incl bcs 
end
*}

ML {* 
fun complete dt_strs bclauses = 
let
  val args = 
    get_cnstrs dt_strs
    |> (map o map) (fn (_, antys, _, _) => length antys)

  fun complt n bcs = 
  let
    fun add bcs i = (if included i bcs then [] else [BC (Lst, [], [i])]) 
  in
    bcs @ (flat (map_range (add bcs) n))
  end
in
  (map2 o map2) complt args bclauses
end
*}

ML {*
fun nominal_datatype2_cmd (opt_thms_name, dt_strs, bn_fun_strs, bn_eq_strs) lthy = 
let
  val pre_typs = 
    map (fn (tvs, tname, mx, _) => (tname, length tvs, mx)) dt_strs

  (* this theory is used just for parsing *)
  val thy = ProofContext.theory_of lthy  
  val tmp_thy = Theory.copy thy 

  val (((dts, (bn_funs, bn_eqs)), bclauses), tmp_thy') = 
    tmp_thy
    |> Sign.add_types pre_typs
    |> prepare_dts dt_strs 
    ||>> prepare_bn_funs bn_fun_strs bn_eq_strs 
    ||>> prepare_bclauses dt_strs 

  val bclauses' = complete dt_strs bclauses
in
  timeit (fn () => nominal_datatype2 opt_thms_name dts bn_funs bn_eqs bclauses' lthy)
end
*}

ML {* 
(* nominal datatype parser *)
local
  structure P = Parse;
  structure S = Scan

  fun triple ((x, y), z) = (x, y, z)
  fun tuple1 ((x, y, z), u) = (x, y, z, u)
  fun tuple2 (((x, y), z), u) = (x, y, u, z)
  fun tuple3 ((x, y), (z, u)) = (x, y, z, u)
in

val _ = Keyword.keyword "bind"

val opt_name = Scan.option (P.binding --| Args.colon)

val anno_typ = S.option (P.name --| P.$$$ "::") -- P.typ

val bind_mode = P.$$$ "bind" |--
  S.optional (Args.parens 
    (Args.$$$ "list" >> K Lst || Args.$$$ "set" >> K Set || Args.$$$ "res" >> K Res)) Lst

val bind_clauses = 
  P.enum "," (bind_mode -- S.repeat1 P.term -- (P.$$$ "in" |-- S.repeat1 P.name) >> triple)

val cnstr_parser =
  P.binding -- S.repeat anno_typ -- bind_clauses -- P.opt_mixfix >> tuple2

(* datatype parser *)
val dt_parser =
  (P.type_args -- P.binding -- P.opt_mixfix >> triple) -- 
    (P.$$$ "=" |-- P.enum1 "|" cnstr_parser) >> tuple1

(* binding function parser *)
val bnfun_parser = 
  S.optional (P.$$$ "binder" |-- P.fixes -- Parse_Spec.where_alt_specs) ([], [])

(* main parser *)
val main_parser =
  opt_name -- P.and_list1 dt_parser -- bnfun_parser >> tuple3

end

(* Command Keyword *)
val _ = Outer_Syntax.local_theory "nominal_datatype" "test" Keyword.thy_decl
  (main_parser >> nominal_datatype2_cmd)
*}


end