Bex1_Bexeq_regular.
(* Title: QuotBase.thy
Author: Cezary Kaliszyk and Christian Urban
*)
theory QuotBase
imports Plain ATP_Linkup Predicate
begin
text {*
Basic definition for equivalence relations
that are represented by predicates.
*}
definition
"equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
definition
"reflp E \<equiv> \<forall>x. E x x"
definition
"symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
definition
"transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
lemma equivp_reflp_symp_transp:
shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
by blast
lemma equivp_reflp:
shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
by (simp only: equivp_reflp_symp_transp reflp_def)
lemma equivp_symp:
shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)"
by (metis equivp_reflp_symp_transp symp_def)
lemma equivp_transp:
shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
by (metis equivp_reflp_symp_transp transp_def)
lemma equivpI:
assumes "reflp R" "symp R" "transp R"
shows "equivp R"
using assms by (simp add: equivp_reflp_symp_transp)
lemma eq_imp_rel:
shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
by (simp add: equivp_reflp)
lemma identity_equivp:
shows "equivp (op =)"
unfolding equivp_def
by auto
text {* Partial equivalences: not yet used anywhere *}
definition
"part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
lemma equivp_implies_part_equivp:
assumes a: "equivp E"
shows "part_equivp E"
using a
unfolding equivp_def part_equivp_def
by auto
text {* Composition of Relations *}
abbreviation
rel_conj (infixr "OOO" 75)
where
"r1 OOO r2 \<equiv> r1 OO r2 OO r1"
lemma eq_comp_r:
shows "((op =) OOO R) = R"
by (auto simp add: expand_fun_eq)
section {* Respects predicate *}
definition
Respects
where
"Respects R x \<equiv> (R x x)"
lemma in_respects:
shows "(x \<in> Respects R) = R x x"
unfolding mem_def Respects_def
by simp
section {* Function map and function relation *}
definition
fun_map (infixr "--->" 55)
where
[simp]: "fun_map f g h x = g (h (f x))"
definition
fun_rel (infixr "===>" 55)
where
[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
lemma fun_map_id:
shows "(id ---> id) = id"
by (simp add: expand_fun_eq id_def)
lemma fun_rel_eq:
shows "((op =) ===> (op =)) = (op =)"
by (simp add: expand_fun_eq)
lemma fun_rel_id:
assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
shows "(R1 ===> R2) f g"
using a by simp
lemma fun_rel_id_asm:
assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
shows "A \<longrightarrow> (R1 ===> R2) f g"
using a by auto
section {* Quotient Predicate *}
definition
"Quotient E Abs Rep \<equiv>
(\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
(\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
lemma Quotient_abs_rep:
assumes a: "Quotient E Abs Rep"
shows "Abs (Rep a) = a"
using a
unfolding Quotient_def
by simp
lemma Quotient_rep_reflp:
assumes a: "Quotient E Abs Rep"
shows "E (Rep a) (Rep a)"
using a
unfolding Quotient_def
by blast
lemma Quotient_rel:
assumes a: "Quotient E Abs Rep"
shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
using a
unfolding Quotient_def
by blast
lemma Quotient_rel_rep:
assumes a: "Quotient R Abs Rep"
shows "R (Rep a) (Rep b) = (a = b)"
using a
unfolding Quotient_def
by metis
lemma Quotient_rep_abs:
assumes a: "Quotient R Abs Rep"
shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
using a unfolding Quotient_def
by blast
lemma Quotient_rel_abs:
assumes a: "Quotient E Abs Rep"
shows "E r s \<Longrightarrow> Abs r = Abs s"
using a unfolding Quotient_def
by blast
lemma Quotient_symp:
assumes a: "Quotient E Abs Rep"
shows "symp E"
using a unfolding Quotient_def symp_def
by metis
lemma Quotient_transp:
assumes a: "Quotient E Abs Rep"
shows "transp E"
using a unfolding Quotient_def transp_def
by metis
lemma identity_quotient:
shows "Quotient (op =) id id"
unfolding Quotient_def id_def
by blast
lemma fun_quotient:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
apply(simp add: expand_fun_eq)
using q1 q2
apply(simp add: Quotient_def)
done
moreover
have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
apply(auto)
using q1 q2 unfolding Quotient_def
apply(metis)
done
moreover
have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
(rep1 ---> abs2) r = (rep1 ---> abs2) s)"
apply(auto simp add: expand_fun_eq)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
done
ultimately
show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
unfolding Quotient_def by blast
qed
lemma abs_o_rep:
assumes a: "Quotient R Abs Rep"
shows "Abs o Rep = id"
apply(rule ext)
apply(simp add: Quotient_abs_rep[OF a])
done
lemma equals_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R xa xb" "R ya yb"
shows "R xa ya = R xb yb"
using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
using a by blast
lemma lambda_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by simp
lemma lambda_prs1:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by simp
lemma rep_abs_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R x1 (Rep (Abs x2))"
using a
by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
lemma rep_abs_rsp_left:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R (Rep (Abs x1)) x2"
using a
by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
(* In the following theorem R1 can be instantiated with anything,
but we know some of the types of the Rep and Abs functions;
so by solving Quotient assumptions we can get a unique R1 that
will be provable; which is why we need to use apply_rsp and
not the primed version *)
lemma apply_rsp:
fixes f g::"'a \<Rightarrow> 'c"
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
using a by simp
lemma apply_rsp':
assumes a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
using a by simp
section {* lemmas for regularisation of ball and bex *}
lemma ball_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Ball (Respects R) P = (All P)"
by (metis equivp_def in_respects a)
lemma bex_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Bex (Respects R) P = (Ex P)"
by (metis equivp_def in_respects a)
lemma ball_reg_right:
assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
shows "All P \<longrightarrow> Ball R Q"
by (metis COMBC_def Collect_def Collect_mem_eq a)
lemma bex_reg_left:
assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
shows "Bex R Q \<longrightarrow> Ex P"
by (metis COMBC_def Collect_def Collect_mem_eq a)
lemma ball_reg_left:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
by (metis equivp_reflp in_respects a)
lemma bex_reg_right:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
by (metis equivp_reflp in_respects a)
lemma ball_reg_eqv_range:
fixes P::"'a \<Rightarrow> bool"
and x::"'a"
assumes a: "equivp R2"
shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
apply(rule iffI)
apply(rule allI)
apply(drule_tac x="\<lambda>y. f x" in bspec)
apply(simp add: in_respects)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply(simp add: reflp_def)
apply(simp)
apply(simp)
done
lemma bex_reg_eqv_range:
assumes a: "equivp R2"
shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
apply(auto)
apply(rule_tac x="\<lambda>y. f x" in bexI)
apply(simp)
apply(simp add: Respects_def in_respects)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply(simp add: reflp_def)
done
lemma all_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "All P"
shows "All Q"
using a b by (metis)
lemma ex_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "Ex P"
shows "Ex Q"
using a b by (metis)
lemma ball_reg:
assumes a: "!x :: 'a. (R x --> P x --> Q x)"
and b: "Ball R P"
shows "Ball R Q"
using a b by (metis COMBC_def Collect_def Collect_mem_eq)
lemma bex_reg:
assumes a: "!x :: 'a. (R x --> P x --> Q x)"
and b: "Bex R P"
shows "Bex R Q"
using a b by (metis COMBC_def Collect_def Collect_mem_eq)
lemma ball_all_comm:
"(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
by auto
lemma bex_ex_comm:
"((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
by auto
section {* Bounded abstraction *}
definition
Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
where
"(x \<in> p) \<Longrightarrow> (Babs p m x = m x)"
lemma babs_rsp:
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g"
shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
apply (auto simp add: Babs_def)
apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
using a apply (simp add: Babs_def)
apply (simp add: in_respects)
using Quotient_rel[OF q]
by metis
lemma babs_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
apply (rule ext)
apply (simp)
apply (subgoal_tac "Rep1 x \<in> Respects R1")
apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
apply (simp add: in_respects Quotient_rel_rep[OF q1])
done
lemma babs_simp:
assumes q: "Quotient R1 Abs Rep"
shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
apply(rule iffI)
apply(simp_all only: babs_rsp[OF q])
apply(auto simp add: Babs_def)
apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
apply(metis Babs_def)
apply (simp add: in_respects)
using Quotient_rel[OF q]
by metis
(* If a user proves that a particular functional relation
is an equivalence this may be useful in regularising *)
lemma babs_reg_eqv:
shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
(* 3 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
assumes a: "(R ===> (op =)) f g"
shows "Ball (Respects R) f = Ball (Respects R) g"
using a by (simp add: Ball_def in_respects)
lemma bex_rsp:
assumes a: "(R ===> (op =)) f g"
shows "(Bex (Respects R) f = Bex (Respects R) g)"
using a by (simp add: Bex_def in_respects)
lemma bex1_rsp:
assumes a: "(R ===> (op =)) f g"
shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)"
using a
by (simp add: Ex1_def Bex1_def in_respects) auto
(* 3 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
assumes a: "Quotient R absf repf"
shows "Ball (Respects R) ((absf ---> id) f) = All f"
using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
by metis
lemma ex_prs:
assumes a: "Quotient R absf repf"
shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
by metis
section {* Bexeq quantifier *}
definition
Bexeq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
where
"Bexeq R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
(* TODO/FIXME: simplify the repetitions in this proof *)
lemma bexeq_rsp:
assumes a: "Quotient R absf repf"
shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)"
apply simp
unfolding Bexeq_def
apply rule
apply rule
apply rule
apply rule
apply (erule conjE)+
apply (erule bexE)
apply rule
apply (rule_tac x="xa" in bexI)
apply metis
apply metis
apply rule+
apply (erule_tac x="xb" in ballE)
prefer 2
apply (metis)
apply (erule_tac x="ya" in ballE)
prefer 2
apply (metis)
apply (metis in_respects)
apply (erule conjE)+
apply (erule bexE)
apply rule
apply (rule_tac x="xa" in bexI)
apply metis
apply metis
apply rule+
apply (erule_tac x="xb" in ballE)
prefer 2
apply (metis)
apply (erule_tac x="ya" in ballE)
prefer 2
apply (metis)
apply (metis in_respects)
done
lemma ex1_prs:
assumes a: "Quotient R absf repf"
shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f"
apply simp
apply (subst Bexeq_def)
apply (subst Bex_def)
apply (subst Ex1_def)
apply simp
apply rule
apply (erule conjE)+
apply (erule_tac exE)
apply (erule conjE)
apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
apply (rule_tac x="absf x" in exI)
apply (thin_tac "\<forall>x\<in>Respects R. \<forall>y\<in>Respects R. f (absf x) \<and> f (absf y) \<longrightarrow> R x y")
apply (simp)
apply rule+
using a unfolding Quotient_def
apply metis
apply rule+
apply (erule_tac x="x" in ballE)
apply (erule_tac x="y" in ballE)
apply simp
apply (simp add: in_respects)
apply (simp add: in_respects)
apply (erule_tac exE)
apply rule
apply (rule_tac x="repf x" in exI)
apply (simp only: in_respects)
apply rule
apply (metis Quotient_rel_rep[OF a])
using a unfolding Quotient_def apply (simp)
apply rule+
using a unfolding Quotient_def in_respects
apply metis
done
lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bexeq R (\<lambda>x. P x))"
apply (simp add: Bex1_def Ex1_def Bexeq_def in_respects)
apply clarify
apply auto
apply (rule bexI)
apply assumption
apply (simp add: in_respects)
apply (simp add: in_respects)
apply auto
done
section {* Various respects and preserve lemmas *}
lemma quot_rel_rsp:
assumes a: "Quotient R Abs Rep"
shows "(R ===> R ===> op =) R R"
apply(rule fun_rel_id)+
apply(rule equals_rsp[OF a])
apply(assumption)+
done
lemma o_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
unfolding o_def expand_fun_eq by simp
lemma o_rsp:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
and a1: "(R2 ===> R3) f1 f2"
and a2: "(R1 ===> R2) g1 g2"
shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
using a1 a2 unfolding o_def expand_fun_eq
by (auto)
lemma cond_prs:
assumes a: "Quotient R absf repf"
shows "absf (if a then repf b else repf c) = (if a then b else c)"
using a unfolding Quotient_def by auto
lemma if_prs:
assumes q: "Quotient R Abs Rep"
shows "Abs (If a (Rep b) (Rep c)) = If a b c"
using Quotient_abs_rep[OF q] by auto
(* q not used *)
lemma if_rsp:
assumes q: "Quotient R Abs Rep"
and a: "a1 = a2" "R b1 b2" "R c1 c2"
shows "R (If a1 b1 c1) (If a2 b2 c2)"
using a by auto
lemma let_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
lemma let_rsp:
assumes q1: "Quotient R1 Abs1 Rep1"
and a1: "(R1 ===> R2) f g"
and a2: "R1 x y"
shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
using apply_rsp[OF q1 a1] a2 by auto
(******************************************)
(* REST OF THE FILE IS UNUSED (until now) *)
(******************************************)
text {*
lemma in_fun:
shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
by (simp add: mem_def)
lemma respects_thm:
shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
unfolding Respects_def
by (simp add: expand_fun_eq)
lemma respects_rep_abs:
assumes a: "Quotient R1 Abs1 Rep1"
and b: "Respects (R1 ===> R2) f"
and c: "R1 x x"
shows "R2 (f (Rep1 (Abs1 x))) (f x)"
using a b[simplified respects_thm] c unfolding Quotient_def
by blast
lemma respects_mp:
assumes a: "Respects (R1 ===> R2) f"
and b: "R1 x y"
shows "R2 (f x) (f y)"
using a b unfolding Respects_def
by simp
lemma respects_o:
assumes a: "Respects (R2 ===> R3) f"
and b: "Respects (R1 ===> R2) g"
shows "Respects (R1 ===> R3) (f o g)"
using a b unfolding Respects_def
by simp
lemma fun_rel_eq_rel:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
\<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
by blast
lemma let_babs:
"v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
by (simp add: Babs_def)
lemma fun_rel_equals:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and r1: "Respects (R1 ===> R2) f"
and r2: "Respects (R1 ===> R2) g"
shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
apply(rule_tac iffI)
apply(rule)+
apply (rule apply_rsp'[of "R1" "R2"])
apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]])
apply auto
using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
apply (metis let_rsp q1)
apply (metis fun_rel_eq_rel let_rsp q1 q2 r2)
using r1 unfolding Respects_def expand_fun_eq
apply(simp (no_asm_use))
apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
done
(* ask Peter: fun_rel_IMP used twice *)
lemma fun_rel_IMP2:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and r1: "Respects (R1 ===> R2) f"
and r2: "Respects (R1 ===> R2) g"
and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
using q1 q2 r1 r2 a
by (simp add: fun_rel_equals)
lemma lambda_rep_abs_rsp:
assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
using r1 r2 by auto
(* ask peter what are literal_case *)
(* literal_case_PRS *)
(* literal_case_RSP *)
(* Cez: !f x. literal_case f x = f x *)
(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
lemma id_prs:
assumes q: "Quotient R Abs Rep"
shows "Abs (id (Rep e)) = id e"
using Quotient_abs_rep[OF q] by auto
lemma id_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R e1 e2"
shows "R (id e1) (id e2)"
using a by auto
*}
end