theory Perm
imports
"../Nominal-General/Nominal2_Base"
"../Nominal-General/Nominal2_Atoms"
"Nominal2_FSet"
uses ("nominal_dt_rawperm.ML")
("nominal_dt_rawfuns.ML")
begin
use "nominal_dt_rawperm.ML"
use "nominal_dt_rawfuns.ML"
ML {*
open Nominal_Dt_RawPerm
open Nominal_Dt_RawFuns
*}
ML {*
fun is_atom ctxt ty =
Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})
fun is_atom_set ctxt (Type ("fun", [t, @{typ bool}])) = is_atom ctxt t
| is_atom_set _ _ = false;
fun is_atom_fset ctxt (Type (@{type_name "fset"}, [t])) = is_atom ctxt t
| is_atom_fset _ _ = false;
fun is_atom_list ctxt (Type (@{type_name "list"}, [t])) = is_atom ctxt t
| is_atom_list _ _ = false
(* functions for producing sets, fsets and lists of general atom type
out from concrete atom types *)
fun mk_atom_set t =
let
val ty = fastype_of t;
val atom_ty = HOLogic.dest_setT ty --> @{typ "atom"};
val img_ty = atom_ty --> ty --> @{typ "atom set"};
in
Const (@{const_name image}, img_ty) $ mk_atom_ty atom_ty t
end
fun mk_atom_fset t =
let
val ty = fastype_of t;
val atom_ty = dest_fsetT ty --> @{typ "atom"};
val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
val fset_to_set = @{term "fset_to_set :: atom fset => atom set"}
in
fset_to_set $ (Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t)
end
*}
(* permutations for quotient types *)
ML {* Class_Target.prove_instantiation_exit_result *}
ML {*
fun quotient_lift_consts_export qtys spec ctxt =
let
val (result, ctxt') = fold_map (Quotient_Def.quotient_lift_const qtys) spec ctxt;
val (ts_loc, defs_loc) = split_list result;
val morphism = ProofContext.export_morphism ctxt' ctxt;
val ts = map (Morphism.term morphism) ts_loc
val defs = Morphism.fact morphism defs_loc
in
(ts, defs, ctxt')
end
*}
ML {*
fun define_lifted_perms qtys full_tnames name_term_pairs thms thy =
let
val lthy =
Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
val (_, _, lthy') = quotient_lift_consts_export qtys name_term_pairs lthy;
val lifted_thms = map (Quotient_Tacs.lifted qtys lthy') thms;
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac lifted_thms))
val lthy'' = Class.prove_instantiation_instance tac lthy'
in
Local_Theory.exit_global lthy''
end
*}
ML {*
fun neq_to_rel r neq =
let
val neq = HOLogic.dest_Trueprop (prop_of neq)
val eq = HOLogic.dest_not neq
val (lhs, rhs) = HOLogic.dest_eq eq
val rel = r $ lhs $ rhs
val nrel = HOLogic.mk_not rel
in
HOLogic.mk_Trueprop nrel
end
*}
ML {*
fun neq_to_rel_tac cases distinct =
rtac notI THEN' eresolve_tac cases THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct)
*}
ML {*
fun distinct_rel ctxt cases (dists, rel) =
let
val ((_, thms), ctxt') = Variable.import false dists ctxt
val terms = map (neq_to_rel rel) thms
val nrels = map (fn t => Goal.prove ctxt' [] [] t (fn _ => neq_to_rel_tac cases dists 1)) terms
in
Variable.export ctxt' ctxt nrels
end
*}
(* Test *)
(*
atom_decl name
datatype trm =
Var "name"
| App "trm" "(trm list) list"
| Lam "name" "trm"
| Let "bp" "trm" "trm"
and bp =
BUnit
| BVar "name"
| BPair "bp" "bp"
setup {* fn thy =>
let
val info = Datatype.the_info thy "Perm.trm"
in
define_raw_perms info 2 thy |> snd
end
*}
print_theorems
*)
end