theory SingleLet
imports "../NewParser"
begin
atom_decl name
declare [[STEPS = 16]]
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind_set x in t
| Let a::"assg" t::"trm" bind_set "bn a" in t
| Foo x::"name" y::"name" t::"trm" t1::"trm" t2::"trm" bind_set x in y t t1 t2
| Bar x::"name" y::"name" t::"trm" bind y x in t x y
| Baz x::"name" t1::"trm" t2::"trm" bind x in t1, bind x in t2
and assg =
As "name" x::"name" t::"trm" bind x in t
binder
bn::"assg \<Rightarrow> atom set"
where
"bn (As x y t) = {atom x}"
typ trm
typ assg
term Var
term App
term Baz
term bn
term fv_trm
lemma a1:
shows "alpha_trm_raw x1 y1 \<Longrightarrow> True"
and "alpha_assg_raw x2 y2 \<Longrightarrow> alpha_bn_raw x2 y2"
and "alpha_bn_raw x3 y3 \<Longrightarrow> True"
apply(induct rule: alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.inducts)
apply(simp_all)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(assumption)
done
lemma a2:
shows "alpha_trm_raw x1 y1 \<Longrightarrow> fv_trm_raw x1 = fv_trm_raw y1"
and "alpha_assg_raw x2 y2 \<Longrightarrow> fv_assg_raw x2 = fv_assg_raw y2 \<and> bn_raw x2 = bn_raw y2"
and "alpha_bn_raw x3 y3 \<Longrightarrow> fv_bn_raw x3 = fv_bn_raw y3"
apply(induct rule: alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.inducts)
apply(simp_all add: alphas a1 prod_alpha_def)
apply(auto)
done
lemma [quot_respect]:
"(op= ===> alpha_trm_raw) Var_raw Var_raw"
"(alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) App_raw App_raw"
"(op= ===> alpha_trm_raw ===> alpha_trm_raw) Lam_raw Lam_raw"
"(alpha_assg_raw ===> alpha_trm_raw ===> alpha_trm_raw) Let_raw Let_raw"
"(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw)
Foo_raw Foo_raw"
"(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw) Bar_raw Bar_raw"
"(op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) Baz_raw Baz_raw"
"(op = ===> op = ===> alpha_trm_raw ===> alpha_assg_raw) As_raw As_raw"
apply(auto)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule refl)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(assumption)
apply(assumption)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2)
apply(simp add: a1)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
apply(rule_tac x="0" in exI)
apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
apply(rule refl)
done
lemma [quot_respect]:
"(alpha_trm_raw ===> op =) fv_trm_raw fv_trm_raw"
"(alpha_assg_raw ===> op =) fv_bn_raw fv_bn_raw"
"(alpha_assg_raw ===> op =) bn_raw bn_raw"
"(alpha_assg_raw ===> op =) fv_assg_raw fv_assg_raw"
"(op = ===> alpha_trm_raw ===> alpha_trm_raw) permute permute"
apply(simp_all add: a2 a1)
sorry
ML {*
val thms_d = map (lift_thm [@{typ trm}, @{typ assg}] @{context}) @{thms distinct}
*}
ML {*
val thms_i = map (lift_thm [@{typ trm}, @{typ assg}] @{context}) @{thms trm_raw_assg_raw.inducts}
*}
ML {*
val thms_f = map (lift_thm [@{typ trm}, @{typ assg}] @{context}) @{thms fv_defs}
*}
thm perm_defs[no_vars]
instance trm :: pt sorry
instance assg :: pt sorry
lemma b1:
"p \<bullet> Var name = Var (p \<bullet> name)"
"p \<bullet> App trm1 trm2 = App (p \<bullet> trm1) (p \<bullet> trm2)"
"p \<bullet> Lam name trm = Lam (p \<bullet> name) (p \<bullet> trm)"
"p \<bullet> Let assg trm = Let (p \<bullet> assg) (p \<bullet> trm)"
"p \<bullet> Foo name1 name2 trm1 trm2 trm3 =
Foo (p \<bullet> name1) (p \<bullet> name2) (p \<bullet> trm1) (p \<bullet> trm2) (p \<bullet> trm3)"
"p \<bullet> Bar name1 name2 trm = Bar (p \<bullet> name1) (p \<bullet> name2) (p \<bullet> trm)"
"p \<bullet> Baz name trm1 trm2 = Baz (p \<bullet> name) (p \<bullet> trm1) (p \<bullet> trm2)"
"p \<bullet> As name1 name2 trm = As (p \<bullet> name1) (p \<bullet> name2) (p \<bullet> trm)"
sorry
(*
ML {*
val thms_p = map (lift_thm [@{typ trm}, @{typ assg}] @{context}) @{thms perm_defs}
*}
*)
thm eq_iff[no_vars]
ML {*
val q1 = lift_thm [@{typ trm}, @{typ assg}] @{context} @{thm "eq_iff"(1)}
*}
local_setup {* Local_Theory.note ((@{binding d1}, []), thms_d) #> snd *}
local_setup {* Local_Theory.note ((@{binding i1}, []), thms_i) #> snd *}
local_setup {* Local_Theory.note ((@{binding f1}, []), thms_f) #> snd *}
local_setup {* Local_Theory.note ((@{binding q1}, []), [q1]) #> snd *}
thm perm_defs
thm perm_simps
lemma supp_fv:
"supp t = fv_trm t"
"supp b = fv_bn b"
apply(induct t and b rule: i1)
apply(simp_all add: f1)
apply(simp_all add: supp_def)
apply(simp_all add: b1)
sorry
consts perm_bn_trm :: "perm \<Rightarrow> trm \<Rightarrow> trm"
consts perm_bn_assg :: "perm \<Rightarrow> assg \<Rightarrow> assg"
lemma y:
"perm_bn_trm p (Var x) = (Var x)"
"perm_bn_trm p (App t1 t2) = (App t1 t2)"
"perm_bn_trm p ("
ML {*
map (lift_thm [@{typ trm}, @{typ assg}] @{context}) @{thms eq_iff}
*}
lemma "Var x \<noteq> App y1 y2"
apply(descending)
apply(simp add: trm_raw.distinct)
ML {*
map (lift_thm [@{typ trm}, @{typ assg}] @{context}) @{thms trm_raw.distinct(1)}
*}
typ trm
typ assg
thm trm_assg.fv
thm trm_assg.supp
thm trm_assg.eq_iff
thm trm_assg.bn
thm trm_assg.perm
thm trm_assg.induct
thm trm_assg.inducts
thm trm_assg.distinct
ML {* Sign.of_sort @{theory} (@{typ trm}, @{sort fs}) *}
(* TEMPORARY
thm trm_assg.fv[simplified trm_assg.supp(1-2)]
*)
end