Manually finished LF induction.
signature QUOTIENT =
sig
exception LIFT_MATCH of string
val quotient_type: ((binding * mixfix) * (typ * term)) list -> Proof.context -> Proof.state
val quotient_type_cmd: (((bstring * mixfix) * string) * string) list -> Proof.context -> Proof.state
val note: binding * thm -> local_theory -> thm * local_theory
end;
structure Quotient: QUOTIENT =
struct
exception LIFT_MATCH of string
(* wrappers for define, note and theorem_i *)
fun define (name, mx, rhs) lthy =
let
val ((rhs, (_ , thm)), lthy') =
Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
in
((rhs, thm), lthy')
end
fun note (name, thm) lthy =
let
val ((_,[thm']), lthy') = Local_Theory.note ((name, []), [thm]) lthy
in
(thm', lthy')
end
fun theorem after_qed goals ctxt =
let
val goals' = map (rpair []) goals
fun after_qed' thms = after_qed (the_single thms)
in
Proof.theorem_i NONE after_qed' [goals'] ctxt
end
(* definition of quotient types *)
(********************************)
(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
fun typedef_term rel rty lthy =
let
val [x, c] = [("x", rty), ("c", HOLogic.mk_setT rty)]
|> Variable.variant_frees lthy [rel]
|> map Free
in
lambda c
(HOLogic.exists_const rty $
lambda x (HOLogic.mk_eq (c, (rel $ x))))
end
(* makes the new type definitions and proves non-emptyness*)
fun typedef_make (qty_name, mx, rel, rty) lthy =
let
val typedef_tac =
EVERY1 [rewrite_goal_tac @{thms mem_def},
rtac @{thm exI},
rtac @{thm exI},
rtac @{thm refl}]
val tfrees = map fst (Term.add_tfreesT rty [])
in
Local_Theory.theory_result
(Typedef.add_typedef false NONE
(qty_name, tfrees, mx)
(typedef_term rel rty lthy)
NONE typedef_tac) lthy
end
(* tactic to prove the QUOT_TYPE theorem for the new type *)
fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
let
val unfold_mem = MetaSimplifier.rewrite_rule [@{thm mem_def}]
val rep_thm = #Rep typedef_info |> unfold_mem
val rep_inv = #Rep_inverse typedef_info
val abs_inv = #Abs_inverse typedef_info |> unfold_mem
val rep_inj = #Rep_inject typedef_info
in
EVERY1 [rtac @{thm QUOT_TYPE.intro},
rtac equiv_thm,
rtac rep_thm,
rtac rep_inv,
rtac abs_inv,
rtac @{thm exI},
rtac @{thm refl},
rtac rep_inj]
end
(* proves the QUOT_TYPE theorem *)
fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
let
val quot_type_const = Const (@{const_name "QUOT_TYPE"}, dummyT)
val goal = HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
|> Syntax.check_term lthy
in
Goal.prove lthy [] [] goal
(K (typedef_quot_type_tac equiv_thm typedef_info))
end
(* proves the quotient theorem *)
fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
let
val quotient_const = Const (@{const_name "QUOTIENT"}, dummyT)
val goal = HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
|> Syntax.check_term lthy
val typedef_quotient_thm_tac =
EVERY1 [K (rewrite_goals_tac [abs_def, rep_def]),
rtac @{thm QUOT_TYPE.QUOTIENT},
rtac quot_type_thm]
in
Goal.prove lthy [] [] goal
(K typedef_quotient_thm_tac)
end
(* main function for constructing the quotient type *)
fun mk_typedef_main (((qty_name, mx), (rty, rel)), equiv_thm) lthy =
let
(* generates typedef *)
val ((_, typedef_info), lthy1) = typedef_make (qty_name, mx, rel, rty) lthy
(* abs and rep functions *)
val abs_ty = #abs_type typedef_info
val rep_ty = #rep_type typedef_info
val abs_name = #Abs_name typedef_info
val rep_name = #Rep_name typedef_info
val abs = Const (abs_name, rep_ty --> abs_ty)
val rep = Const (rep_name, abs_ty --> rep_ty)
(* ABS and REP definitions *)
val ABS_const = Const (@{const_name "QUOT_TYPE.ABS"}, dummyT )
val REP_const = Const (@{const_name "QUOT_TYPE.REP"}, dummyT )
val ABS_trm = Syntax.check_term lthy1 (ABS_const $ rel $ abs)
val REP_trm = Syntax.check_term lthy1 (REP_const $ rep)
val ABS_name = Binding.prefix_name "ABS_" qty_name
val REP_name = Binding.prefix_name "REP_" qty_name
val (((ABS, ABS_def), (REP, REP_def)), lthy2) =
lthy1 |> define (ABS_name, NoSyn, ABS_trm)
||>> define (REP_name, NoSyn, REP_trm)
(* quot_type theorem *)
val quot_thm = typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy2
val quot_thm_name = Binding.prefix_name "QUOT_TYPE_" qty_name
(* quotient theorem *)
val quotient_thm = typedef_quotient_thm (rel, ABS, REP, ABS_def, REP_def, quot_thm) lthy2
val quotient_thm_name = Binding.prefix_name "QUOTIENT_" qty_name
(* storing the quot-info *)
val qty_str = fst (Term.dest_Type abs_ty)
val _ = tracing ("storing under: " ^ qty_str)
val lthy3 = quotdata_update qty_str
(Logic.varifyT abs_ty, Logic.varifyT rty, rel, equiv_thm) lthy2
(* FIXME: varifyT should not be used *)
(* FIXME: the relation needs to be a string, since its type needs *)
(* FIXME: to recalculated in for example REGULARIZE *)
(* storing of the equiv_thm under a name *)
val (_, lthy4) = note (Binding.suffix_name "_equiv" qty_name, equiv_thm) lthy3
(* interpretation *)
val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
val eqn1i = Thm.prop_of (symmetric eqn1pre)
val ((_, [eqn2pre]), lthy6) = Variable.import true [REP_def] lthy5;
val eqn2i = Thm.prop_of (symmetric eqn2pre)
val exp_morphism = ProofContext.export_morphism lthy6 (ProofContext.init (ProofContext.theory_of lthy6));
val exp_term = Morphism.term exp_morphism;
val exp = Morphism.thm exp_morphism;
val mthd = Method.SIMPLE_METHOD ((rtac quot_thm 1) THEN
ALLGOALS (simp_tac (HOL_basic_ss addsimps [(symmetric (exp ABS_def)), (symmetric (exp REP_def))])))
val mthdt = Method.Basic (fn _ => mthd)
val bymt = Proof.global_terminal_proof (mthdt, NONE)
val exp_i = [(@{const_name QUOT_TYPE}, ((("QUOT_TYPE_I_" ^ (Binding.name_of qty_name)), true),
Expression.Named [("R", rel), ("Abs", abs), ("Rep", rep) ]))]
in
lthy6
|> note (quot_thm_name, quot_thm)
||>> note (quotient_thm_name, quotient_thm)
||> Local_Theory.theory (fn thy =>
let
val global_eqns = map exp_term [eqn2i, eqn1i];
(* Not sure if the following context should not be used *)
val (global_eqns2, lthy7) = Variable.import_terms true global_eqns lthy6;
val global_eqns3 = map (fn t => (bindd, t)) global_eqns2;
in ProofContext.theory_of (bymt (Expression.interpretation (exp_i, []) global_eqns3 thy)) end)
end
(* interface and syntax setup *)
(* the ML-interface takes a list of 4-tuples consisting of *)
(* *)
(* - the name of the quotient type *)
(* - its mixfix annotation *)
(* - the type to be quotient *)
(* - the relation according to which the type is quotient *)
fun quotient_type quot_list lthy =
let
fun mk_goal (rty, rel) =
let
val EQUIV_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
in
HOLogic.mk_Trueprop (Const (@{const_name EQUIV}, EQUIV_ty) $ rel)
end
val goals = map (mk_goal o snd) quot_list
fun after_qed thms lthy =
fold_map mk_typedef_main (quot_list ~~ thms) lthy |> snd
in
theorem after_qed goals lthy
end
fun quotient_type_cmd spec lthy =
let
fun parse_spec (((qty_str, mx), rty_str), rel_str) =
let
val qty_name = Binding.name qty_str
val rty = Syntax.read_typ lthy rty_str
val rel = Syntax.read_term lthy rel_str
in
((qty_name, mx), (rty, rel))
end
in
quotient_type (map parse_spec spec) lthy
end
val quotspec_parser =
OuterParse.and_list1
(OuterParse.short_ident -- OuterParse.opt_infix --
(OuterParse.$$$ "=" |-- OuterParse.typ) --
(OuterParse.$$$ "/" |-- OuterParse.term))
val _ = OuterKeyword.keyword "/"
val _ =
OuterSyntax.local_theory_to_proof "quotient"
"quotient type definitions (requires equivalence proofs)"
OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
end; (* structure *)
open Quotient