theory QuotScript
imports Plain ATP_Linkup
begin
definition
"equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
definition
"reflp E \<equiv> \<forall>x. E x x"
definition
"symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
definition
"transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
lemma equivp_reflp_symp_transp:
shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
by (blast)
lemma equivp_refl:
shows "equivp R \<Longrightarrow> (\<And>x. R x x)"
by (simp add: equivp_reflp_symp_transp reflp_def)
lemma equivp_reflp:
shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
by (simp add: equivp_reflp_symp_transp reflp_def)
definition
"PART_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
lemma equivp_IMP_PART_equivp:
assumes a: "equivp E"
shows "PART_equivp E"
using a unfolding equivp_def PART_equivp_def
by auto
definition
"Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
(\<forall>a. E (Rep a) (Rep a)) \<and>
(\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
lemma Quotient_ABS_REP:
assumes a: "Quotient E Abs Rep"
shows "Abs (Rep a) = a"
using a unfolding Quotient_def
by simp
lemma Quotient_REP_reflp:
assumes a: "Quotient E Abs Rep"
shows "E (Rep a) (Rep a)"
using a unfolding Quotient_def
by blast
lemma Quotient_REL:
assumes a: "Quotient E Abs Rep"
shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
using a unfolding Quotient_def
by blast
lemma Quotient_REL_ABS:
assumes a: "Quotient E Abs Rep"
shows "E r s \<Longrightarrow> Abs r = Abs s"
using a unfolding Quotient_def
by blast
lemma Quotient_REL_ABS_EQ:
assumes a: "Quotient E Abs Rep"
shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)"
using a unfolding Quotient_def
by blast
lemma Quotient_REL_REP:
assumes a: "Quotient R Abs Rep"
shows "R (Rep a) (Rep b) = (a = b)"
using a unfolding Quotient_def
by metis
lemma Quotient_REP_ABS:
assumes a: "Quotient R Abs Rep"
shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
using a unfolding Quotient_def
by blast
lemma IDENTITY_equivp:
shows "equivp (op =)"
unfolding equivp_def
by auto
lemma IDENTITY_Quotient:
shows "Quotient (op =) id id"
unfolding Quotient_def id_def
by blast
lemma Quotient_symp:
assumes a: "Quotient E Abs Rep"
shows "symp E"
using a unfolding Quotient_def symp_def
by metis
lemma Quotient_transp:
assumes a: "Quotient E Abs Rep"
shows "transp E"
using a unfolding Quotient_def transp_def
by metis
fun
prod_rel
where
"prod_rel r1 r2 = (\<lambda>(a,b) (c,d). r1 a c \<and> r2 b d)"
fun
fun_map
where
"fun_map f g h x = g (h (f x))"
abbreviation
fun_map_syn (infixr "--->" 55)
where
"f ---> g \<equiv> fun_map f g"
lemma FUN_MAP_I:
shows "(id ---> id) = id"
by (simp add: expand_fun_eq id_def)
lemma IN_FUN:
shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
by (simp add: mem_def)
fun
FUN_REL
where
"FUN_REL E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
abbreviation
FUN_REL_syn (infixr "===>" 55)
where
"E1 ===> E2 \<equiv> FUN_REL E1 E2"
lemma FUN_REL_EQ:
"(op =) ===> (op =) \<equiv> (op =)"
by (rule eq_reflection) (simp add: expand_fun_eq)
lemma FUN_Quotient:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
apply(simp add: expand_fun_eq)
using q1 q2
apply(simp add: Quotient_def)
done
moreover
have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
apply(auto)
using q1 q2 unfolding Quotient_def
apply(metis)
done
moreover
have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
(rep1 ---> abs2) r = (rep1 ---> abs2) s)"
apply(auto simp add: expand_fun_eq)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
done
ultimately
show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
unfolding Quotient_def by blast
qed
definition
Respects
where
"Respects R x \<equiv> (R x x)"
lemma IN_RESPECTS:
shows "(x \<in> Respects R) = R x x"
unfolding mem_def Respects_def by simp
lemma RESPECTS_THM:
shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
unfolding Respects_def
by (simp add: expand_fun_eq)
lemma RESPECTS_MP:
assumes a: "Respects (R1 ===> R2) f"
and b: "R1 x y"
shows "R2 (f x) (f y)"
using a b unfolding Respects_def
by simp
lemma RESPECTS_REP_ABS:
assumes a: "Quotient R1 Abs1 Rep1"
and b: "Respects (R1 ===> R2) f"
and c: "R1 x x"
shows "R2 (f (Rep1 (Abs1 x))) (f x)"
using a b[simplified RESPECTS_THM] c unfolding Quotient_def
by blast
lemma RESPECTS_o:
assumes a: "Respects (R2 ===> R3) f"
and b: "Respects (R1 ===> R2) g"
shows "Respects (R1 ===> R3) (f o g)"
using a b unfolding Respects_def
by simp
(*
definition
"RES_EXISTS_EQUIV R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and>
(\<forall>x\<in> Respects R. \<forall>y\<in> Respects R. P x \<and> P y \<longrightarrow> R x y)"
*)
lemma FUN_REL_EQ_REL:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
\<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
using FUN_Quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
by blast
(* TODO: it is the same as APPLY_RSP *)
(* q1 and q2 not used; see next lemma *)
lemma FUN_REL_MP:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
by simp
lemma FUN_REL_IMP:
shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
by simp
lemma FUN_REL_EQUALS:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and r1: "Respects (R1 ===> R2) f"
and r2: "Respects (R1 ===> R2) g"
shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
apply(rule_tac iffI)
using FUN_Quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
apply(metis FUN_REL_IMP)
using r1 unfolding Respects_def expand_fun_eq
apply(simp (no_asm_use))
apply(metis Quotient_REL[OF q2] Quotient_REL_REP[OF q1])
done
(* ask Peter: FUN_REL_IMP used twice *)
lemma FUN_REL_IMP2:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and r1: "Respects (R1 ===> R2) f"
and r2: "Respects (R1 ===> R2) g"
and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
using q1 q2 r1 r2 a
by (simp add: FUN_REL_EQUALS)
(* We don't use it, it is exactly the same as Quotient_REL_REP but wrong way *)
lemma EQUALS_PRS:
assumes q: "Quotient R Abs Rep"
shows "(x = y) = R (Rep x) (Rep y)"
by (rule Quotient_REL_REP[OF q, symmetric])
lemma equals_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R xa xb" "R ya yb"
shows "R xa ya = R xb yb"
using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
using a by blast
lemma lambda_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2]
by simp
lemma lambda_prs1:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2]
by simp
(* Not used since applic_prs proves a version for an arbitrary number of arguments *)
lemma APP_PRS:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "abs2 ((abs1 ---> rep2) f (rep1 x)) = f x"
unfolding expand_fun_eq
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2]
by simp
(* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *)
lemma LAMBDA_RSP:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and a: "(R1 ===> R2) f1 f2"
shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)"
by (rule a)
(* ASK Peter about next four lemmas in quotientScript
lemma ABSTRACT_PRS:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "f = (Rep1 ---> Abs2) ???"
*)
lemma LAMBDA_REP_ABS_RSP:
assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
using r1 r2 by auto
lemma REP_ABS_RSP:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R x1 (Rep (Abs x2))"
using q a by (metis Quotient_REL[OF q] Quotient_ABS_REP[OF q] Quotient_REP_reflp[OF q])
(* Not used *)
lemma REP_ABS_RSP_LEFT:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R x1 (Rep (Abs x2))"
using q a by (metis Quotient_REL[OF q] Quotient_ABS_REP[OF q] Quotient_REP_reflp[OF q])
(* ----------------------------------------------------- *)
(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE, *)
(* Ball, Bex, RES_EXISTS_EQUIV *)
(* ----------------------------------------------------- *)
(* bool theory: COND, LET *)
lemma IF_PRS:
assumes q: "Quotient R Abs Rep"
shows "If a b c = Abs (If a (Rep b) (Rep c))"
using Quotient_ABS_REP[OF q] by auto
(* ask peter: no use of q *)
lemma IF_RSP:
assumes q: "Quotient R Abs Rep"
and a: "a1 = a2" "R b1 b2" "R c1 c2"
shows "R (If a1 b1 c1) (If a2 b2 c2)"
using a by auto
lemma LET_PRS:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))"
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2] by auto
lemma LET_RSP:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and a1: "(R1 ===> R2) f g"
and a2: "R1 x y"
shows "R2 (Let x f) (Let y g)"
using FUN_REL_MP[OF q1 q2 a1] a2
by auto
(* ask peter what are literal_case *)
(* literal_case_PRS *)
(* literal_case_RSP *)
(* FUNCTION APPLICATION *)
(* Not used *)
lemma APPLY_PRS:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))"
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2] by auto
(* In the following theorem R1 can be instantiated with anything,
but we know some of the types of the Rep and Abs functions;
so by solving Quotient assumptions we can get a unique R2 that
will be provable; which is why we need to use APPLY_RSP *)
lemma apply_rsp:
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 ((f::'a\<Rightarrow>'c) x) ((g::'a\<Rightarrow>'c) y)"
using a by (rule FUN_REL_IMP)
lemma apply_rsp':
assumes a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
using a by (rule FUN_REL_IMP)
(* combinators: I, K, o, C, W *)
(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
lemma I_PRS:
assumes q: "Quotient R Abs Rep"
shows "id e = Abs (id (Rep e))"
using Quotient_ABS_REP[OF q] by auto
lemma I_RSP:
assumes q: "Quotient R Abs Rep"
and a: "R e1 e2"
shows "R (id e1) (id e2)"
using a by auto
lemma o_PRS:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))"
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2] Quotient_ABS_REP[OF q3]
unfolding o_def expand_fun_eq
by simp
lemma o_RSP:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
and a1: "(R2 ===> R3) f1 f2"
and a2: "(R1 ===> R2) g1 g2"
shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
using a1 a2 unfolding o_def expand_fun_eq
by (auto)
lemma COND_PRS:
assumes a: "Quotient R absf repf"
shows "(if a then b else c) = absf (if a then repf b else repf c)"
using a unfolding Quotient_def by auto
(* Set of lemmas for regularisation of ball and bex *)
lemma ball_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Ball (Respects R) P = (All P)"
by (metis equivp_def IN_RESPECTS a)
lemma bex_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Bex (Respects R) P = (Ex P)"
by (metis equivp_def IN_RESPECTS a)
lemma ball_reg_right:
assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
shows "All P \<longrightarrow> Ball R Q"
by (metis COMBC_def Collect_def Collect_mem_eq a)
lemma bex_reg_left:
assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
shows "Bex R Q \<longrightarrow> Ex P"
by (metis COMBC_def Collect_def Collect_mem_eq a)
lemma ball_reg_left:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
by (metis equivp_reflp IN_RESPECTS a)
lemma bex_reg_right:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
by (metis equivp_reflp IN_RESPECTS a)
lemma ball_reg_eqv_range:
fixes P::"'a \<Rightarrow> bool"
and x::"'a"
assumes a: "equivp R2"
shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
apply(rule iffI)
apply(rule allI)
apply(drule_tac x="\<lambda>y. f x" in bspec)
apply(simp add: Respects_def IN_RESPECTS)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply(simp add: reflp_def)
apply(simp)
apply(simp)
done
lemma bex_reg_eqv_range:
fixes P::"'a \<Rightarrow> bool"
and x::"'a"
assumes a: "equivp R2"
shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
apply(auto)
apply(rule_tac x="\<lambda>y. f x" in bexI)
apply(simp)
apply(simp add: Respects_def IN_RESPECTS)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply(simp add: reflp_def)
done
lemma all_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "All P"
shows "All Q"
using a b by (metis)
lemma ex_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "Ex P"
shows "Ex Q"
using a b by (metis)
lemma ball_reg:
assumes a: "!x :: 'a. (R x --> P x --> Q x)"
and b: "Ball R P"
shows "Ball R Q"
using a b by (metis COMBC_def Collect_def Collect_mem_eq)
lemma bex_reg:
assumes a: "!x :: 'a. (R x --> P x --> Q x)"
and b: "Bex R P"
shows "Bex R Q"
using a b by (metis COMBC_def Collect_def Collect_mem_eq)
lemma ball_all_comm:
"(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
by auto
lemma bex_ex_comm:
"((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
by auto
(* 2 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
assumes a: "(R ===> (op =)) f g"
shows "Ball (Respects R) f = Ball (Respects R) g"
using a by (simp add: Ball_def IN_RESPECTS)
lemma bex_rsp:
assumes a: "(R ===> (op =)) f g"
shows "(Bex (Respects R) f = Bex (Respects R) g)"
using a by (simp add: Bex_def IN_RESPECTS)
(* 2 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
assumes a: "Quotient R absf repf"
shows "Ball (Respects R) ((absf ---> id) f) = All f"
using a unfolding Quotient_def
by (metis IN_RESPECTS fun_map.simps id_apply)
lemma ex_prs:
assumes a: "Quotient R absf repf"
shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
using a unfolding Quotient_def
by (metis COMBC_def Collect_def Collect_mem_eq IN_RESPECTS fun_map.simps id_apply)
end