QuotScript.thy
author Christian Urban <urbanc@in.tum.de>
Fri, 04 Dec 2009 15:19:39 +0100
changeset 531 3feed4dbfa45
parent 530 5e92ce8f306d
child 536 44fa9df44e6f
permissions -rw-r--r--
merge

theory QuotScript
imports Plain ATP_Linkup
begin

definition 
  "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)" 

definition
  "reflp E \<equiv> \<forall>x. E x x"

definition 
  "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"

definition
  "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"

lemma equivp_reflp_symp_transp:
  shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
by (blast)

lemma equivp_refl:
  shows "equivp R \<Longrightarrow> (\<And>x. R x x)"
  by (simp add: equivp_reflp_symp_transp reflp_def)

lemma equivp_reflp:
  shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
  by (simp add: equivp_reflp_symp_transp reflp_def)

definition
  "PART_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"

lemma equivp_IMP_PART_equivp:
  assumes a: "equivp E"
  shows "PART_equivp E"
using a unfolding equivp_def PART_equivp_def
by auto

definition
  "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and> 
                        (\<forall>a. E (Rep a) (Rep a)) \<and> 
                        (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"

lemma Quotient_ABS_REP:
  assumes a: "Quotient E Abs Rep"
  shows "Abs (Rep a) = a" 
using a unfolding Quotient_def
by simp

lemma Quotient_REP_reflp:
  assumes a: "Quotient E Abs Rep"
  shows "E (Rep a) (Rep a)" 
using a unfolding Quotient_def
by blast

lemma Quotient_REL:
  assumes a: "Quotient E Abs Rep"
  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
using a unfolding Quotient_def
by blast

lemma Quotient_REL_ABS:
  assumes a: "Quotient E Abs Rep"
  shows "E r s \<Longrightarrow> Abs r = Abs s"
using a unfolding Quotient_def
by blast

lemma Quotient_REL_ABS_EQ:
  assumes a: "Quotient E Abs Rep"
  shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)"
using a unfolding Quotient_def
by blast

lemma Quotient_REL_REP:
  assumes a: "Quotient R Abs Rep"
  shows "R (Rep a) (Rep b) = (a = b)"
using a unfolding Quotient_def
by metis

lemma Quotient_REP_ABS:
  assumes a: "Quotient R Abs Rep"
  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
using a unfolding Quotient_def
by blast

lemma IDENTITY_equivp:
  shows "equivp (op =)"
unfolding equivp_def
by auto

lemma IDENTITY_Quotient:
  shows "Quotient (op =) id id"
unfolding Quotient_def id_def
by blast

lemma Quotient_symp:
  assumes a: "Quotient E Abs Rep"
  shows "symp E"
using a unfolding Quotient_def symp_def
by metis

lemma Quotient_transp:
  assumes a: "Quotient E Abs Rep"
  shows "transp E"
using a unfolding Quotient_def transp_def
by metis

fun
  prod_rel
where
  "prod_rel r1 r2 = (\<lambda>(a,b) (c,d). r1 a c \<and> r2 b d)"

fun
  fun_map
where
  "fun_map f g h x = g (h (f x))"


abbreviation
  fun_map_syn (infixr "--->" 55)
where
  "f ---> g \<equiv> fun_map f g"

lemma FUN_MAP_I:
  shows "(id ---> id) = id"
by (simp add: expand_fun_eq id_def)

lemma IN_FUN:
  shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
by (simp add: mem_def)

fun
  FUN_REL 
where
  "FUN_REL E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"

abbreviation
  FUN_REL_syn (infixr "===>" 55)
where
  "E1 ===> E2 \<equiv> FUN_REL E1 E2"

lemma FUN_REL_EQ:
  "(op =) ===> (op =) \<equiv> (op =)"
by (rule eq_reflection) (simp add: expand_fun_eq)

lemma FUN_Quotient:
  assumes q1: "Quotient R1 abs1 rep1"
  and     q2: "Quotient R2 abs2 rep2"
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
    apply(simp add: expand_fun_eq)
    using q1 q2
    apply(simp add: Quotient_def)
    done
  moreover
  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
    apply(auto)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    done
  moreover
  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
    apply(auto simp add: expand_fun_eq)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    done
  ultimately
  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
    unfolding Quotient_def by blast
qed

definition
  Respects
where
  "Respects R x \<equiv> (R x x)"

lemma IN_RESPECTS:
  shows "(x \<in> Respects R) = R x x"
unfolding mem_def Respects_def by simp

lemma RESPECTS_THM:
  shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
unfolding Respects_def
by (simp add: expand_fun_eq) 

lemma RESPECTS_MP:
  assumes a: "Respects (R1 ===> R2) f"
  and     b: "R1 x y"
  shows "R2 (f x) (f y)"
using a b unfolding Respects_def
by simp

lemma RESPECTS_REP_ABS:
  assumes a: "Quotient R1 Abs1 Rep1"
  and     b: "Respects (R1 ===> R2) f"
  and     c: "R1 x x"
  shows "R2 (f (Rep1 (Abs1 x))) (f x)"
using a b[simplified RESPECTS_THM] c unfolding Quotient_def
by blast

lemma RESPECTS_o:
  assumes a: "Respects (R2 ===> R3) f"
  and     b: "Respects (R1 ===> R2) g"
  shows "Respects (R1 ===> R3) (f o g)"
using a b unfolding Respects_def
by simp

(*
definition
  "RES_EXISTS_EQUIV R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> 
                          (\<forall>x\<in> Respects R. \<forall>y\<in> Respects R. P x \<and> P y \<longrightarrow> R x y)"
*)

lemma FUN_REL_EQ_REL:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g) 
                             \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
using FUN_Quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
by blast

(* TODO: it is the same as APPLY_RSP *)
(* q1 and q2 not used; see next lemma *)
lemma FUN_REL_MP:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
by simp

lemma FUN_REL_IMP:
  shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
by simp

lemma FUN_REL_EQUALS:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     r1: "Respects (R1 ===> R2) f"
  and     r2: "Respects (R1 ===> R2) g" 
  shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
apply(rule_tac iffI)
using FUN_Quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
apply(metis FUN_REL_IMP)
using r1 unfolding Respects_def expand_fun_eq
apply(simp (no_asm_use))
apply(metis Quotient_REL[OF q2] Quotient_REL_REP[OF q1])
done

(* ask Peter: FUN_REL_IMP used twice *) 
lemma FUN_REL_IMP2:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     r1: "Respects (R1 ===> R2) f"
  and     r2: "Respects (R1 ===> R2) g" 
  and     a:  "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
  shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
using q1 q2 r1 r2 a
by (simp add: FUN_REL_EQUALS)

(* We don't use it, it is exactly the same as Quotient_REL_REP but wrong way *)
lemma EQUALS_PRS:
  assumes q: "Quotient R Abs Rep"
  shows "(x = y) = R (Rep x) (Rep y)"
by (rule Quotient_REL_REP[OF q, symmetric])

lemma equals_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "R xa xb" "R ya yb"
  shows "R xa ya = R xb yb"
using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
using a by blast

lemma lambda_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2]
by simp

lemma lambda_prs1:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2]
by simp

(* Not used since applic_prs proves a version for an arbitrary number of arguments *)
lemma APP_PRS:
  assumes q1: "Quotient R1 abs1 rep1"
  and     q2: "Quotient R2 abs2 rep2"
  shows "abs2 ((abs1 ---> rep2) f (rep1 x)) = f x"
unfolding expand_fun_eq
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2]
by simp

(* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *)
lemma LAMBDA_RSP:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     a: "(R1 ===> R2) f1 f2"
  shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)"
by (rule a)

(* ASK Peter about next four lemmas in quotientScript
lemma ABSTRACT_PRS:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "f = (Rep1 ---> Abs2) ???"
*)

lemma LAMBDA_REP_ABS_RSP:
  assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
  and     r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
  shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
using r1 r2 by auto

lemma REP_ABS_RSP:
  assumes q: "Quotient R Abs Rep"
  and     a: "R x1 x2"
  shows "R x1 (Rep (Abs x2))"
using q a by (metis Quotient_REL[OF q] Quotient_ABS_REP[OF q] Quotient_REP_reflp[OF q])

(* Not used *)
lemma REP_ABS_RSP_LEFT:
  assumes q: "Quotient R Abs Rep"
  and     a: "R x1 x2"
  shows "R x1 (Rep (Abs x2))"
using q a by (metis Quotient_REL[OF q] Quotient_ABS_REP[OF q] Quotient_REP_reflp[OF q])

(* ----------------------------------------------------- *)
(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE,           *)
(*              Ball, Bex, RES_EXISTS_EQUIV              *)
(* ----------------------------------------------------- *)

(* bool theory: COND, LET *)

lemma IF_PRS:
  assumes q: "Quotient R Abs Rep"
  shows "If a b c = Abs (If a (Rep b) (Rep c))"
using Quotient_ABS_REP[OF q] by auto

(* ask peter: no use of q *)
lemma IF_RSP:
  assumes q: "Quotient R Abs Rep"
  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
  shows "R (If a1 b1 c1) (If a2 b2 c2)"
using a by auto

lemma LET_PRS:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))"
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2] by auto

lemma LET_RSP:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     a1: "(R1 ===> R2) f g"
  and     a2: "R1 x y"
  shows "R2 (Let x f) (Let y g)"
using FUN_REL_MP[OF q1 q2 a1] a2
by auto


(* ask peter what are literal_case *)
(* literal_case_PRS *)
(* literal_case_RSP *)


(* FUNCTION APPLICATION *)

(* Not used *)
lemma APPLY_PRS:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))"
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2] by auto

(* In the following theorem R1 can be instantiated with anything,
   but we know some of the types of the Rep and Abs functions;
   so by solving Quotient assumptions we can get a unique R2 that
   will be provable; which is why we need to use APPLY_RSP *)
lemma apply_rsp:
  assumes q: "Quotient R1 Abs1 Rep1"
  and     a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 ((f::'a\<Rightarrow>'c) x) ((g::'a\<Rightarrow>'c) y)"
using a by (rule FUN_REL_IMP)

lemma apply_rsp':
  assumes a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
using a by (rule FUN_REL_IMP)


(* combinators: I, K, o, C, W *)

(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
lemma I_PRS:
  assumes q: "Quotient R Abs Rep"
  shows "id e = Abs (id (Rep e))"
using Quotient_ABS_REP[OF q] by auto

lemma I_RSP:
  assumes q: "Quotient R Abs Rep"
  and     a: "R e1 e2"
  shows "R (id e1) (id e2)"
using a by auto

lemma o_PRS:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     q3: "Quotient R3 Abs3 Rep3"
  shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))"
using Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2] Quotient_ABS_REP[OF q3]
unfolding o_def expand_fun_eq
by simp

lemma o_RSP:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     q3: "Quotient R3 Abs3 Rep3"
  and     a1: "(R2 ===> R3) f1 f2"
  and     a2: "(R1 ===> R2) g1 g2"
  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
using a1 a2 unfolding o_def expand_fun_eq
by (auto)





lemma COND_PRS:
  assumes a: "Quotient R absf repf"
  shows "(if a then b else c) = absf (if a then repf b else repf c)"
  using a unfolding Quotient_def by auto





(* Set of lemmas for regularisation of ball and bex *)
lemma ball_reg_eqv:
  fixes P :: "'a \<Rightarrow> bool"
  assumes a: "equivp R"
  shows "Ball (Respects R) P = (All P)"
  by (metis equivp_def IN_RESPECTS a)

lemma bex_reg_eqv:
  fixes P :: "'a \<Rightarrow> bool"
  assumes a: "equivp R"
  shows "Bex (Respects R) P = (Ex P)"
  by (metis equivp_def IN_RESPECTS a)

lemma ball_reg_right:
  assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
  shows "All P \<longrightarrow> Ball R Q"
  by (metis COMBC_def Collect_def Collect_mem_eq a)

lemma bex_reg_left:
  assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
  shows "Bex R Q \<longrightarrow> Ex P"
  by (metis COMBC_def Collect_def Collect_mem_eq a)

lemma ball_reg_left:
  assumes a: "equivp R"
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
  by (metis equivp_reflp IN_RESPECTS a)

lemma bex_reg_right:
  assumes a: "equivp R"
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
  by (metis equivp_reflp IN_RESPECTS a)

lemma ball_reg_eqv_range:
  fixes P::"'a \<Rightarrow> bool"
  and x::"'a"
  assumes a: "equivp R2"
  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
  apply(rule iffI)
  apply(rule allI)
  apply(drule_tac x="\<lambda>y. f x" in bspec)
  apply(simp add: Respects_def IN_RESPECTS)
  apply(rule impI)
  using a equivp_reflp_symp_transp[of "R2"]
  apply(simp add: reflp_def)
  apply(simp)
  apply(simp)
  done

lemma bex_reg_eqv_range:
  fixes P::"'a \<Rightarrow> bool"
  and x::"'a"
  assumes a: "equivp R2"
  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
  apply(auto)
  apply(rule_tac x="\<lambda>y. f x" in bexI)
  apply(simp)
  apply(simp add: Respects_def IN_RESPECTS)
  apply(rule impI)
  using a equivp_reflp_symp_transp[of "R2"]
  apply(simp add: reflp_def)
  done

lemma all_reg:
  assumes a: "!x :: 'a. (P x --> Q x)"
  and     b: "All P"
  shows "All Q"
  using a b by (metis)

lemma ex_reg:
  assumes a: "!x :: 'a. (P x --> Q x)"
  and     b: "Ex P"
  shows "Ex Q"
  using a b by (metis)

lemma ball_reg:
  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
  and     b: "Ball R P"
  shows "Ball R Q"
  using a b by (metis COMBC_def Collect_def Collect_mem_eq)

lemma bex_reg:
  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
  and     b: "Bex R P"
  shows "Bex R Q"
  using a b by (metis COMBC_def Collect_def Collect_mem_eq)

lemma ball_all_comm:
  "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
by auto

lemma bex_ex_comm:
  "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
by auto

(* 2 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "Ball (Respects R) f = Ball (Respects R) g"
  using a by (simp add: Ball_def IN_RESPECTS)

lemma bex_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "(Bex (Respects R) f = Bex (Respects R) g)"
  using a by (simp add: Bex_def IN_RESPECTS)

(* 2 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
  assumes a: "Quotient R absf repf"
  shows "Ball (Respects R) ((absf ---> id) f) = All f"
  using a unfolding Quotient_def
  by (metis IN_RESPECTS fun_map.simps id_apply)

lemma ex_prs:
  assumes a: "Quotient R absf repf"
  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
  using a unfolding Quotient_def
  by (metis COMBC_def Collect_def Collect_mem_eq IN_RESPECTS fun_map.simps id_apply)

end