theory FSet
imports QuotMain
begin
inductive
list_eq (infix "\<approx>" 50)
where
"a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
lemma list_eq_refl:
shows "xs \<approx> xs"
by (induct xs) (auto intro: list_eq.intros)
lemma equiv_list_eq:
shows "EQUIV list_eq"
unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
apply(auto intro: list_eq.intros list_eq_refl)
done
quotient fset = "'a list" / "list_eq"
apply(rule equiv_list_eq)
done
print_theorems
typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"
quotient_def
EMPTY :: "'a fset"
where
"EMPTY \<equiv> ([]::'a list)"
term Nil
term EMPTY
thm EMPTY_def
quotient_def
INSERT :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
"INSERT \<equiv> op #"
term Cons
term INSERT
thm INSERT_def
quotient_def
FUNION :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
"FUNION \<equiv> (op @)"
term append
term FUNION
thm FUNION_def
thm QUOTIENT_fset
thm QUOT_TYPE_I_fset.thm11
fun
membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"
fun
card1 :: "'a list \<Rightarrow> nat"
where
card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"
quotient_def
CARD :: "'a fset \<Rightarrow> nat"
where
"CARD \<equiv> card1"
term card1
term CARD
thm CARD_def
(* text {*
Maybe make_const_def should require a theorem that says that the particular lifted function
respects the relation. With it such a definition would be impossible:
make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)
lemma card1_0:
fixes a :: "'a list"
shows "(card1 a = 0) = (a = [])"
by (induct a) auto
lemma not_mem_card1:
fixes x :: "'a"
fixes xs :: "'a list"
shows "(~(x memb xs)) = (card1 (x # xs) = Suc (card1 xs))"
by auto
lemma mem_cons:
fixes x :: "'a"
fixes xs :: "'a list"
assumes a : "x memb xs"
shows "x # xs \<approx> xs"
using a by (induct xs) (auto intro: list_eq.intros )
lemma card1_suc:
fixes xs :: "'a list"
fixes n :: "nat"
assumes c: "card1 xs = Suc n"
shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done
definition
rsp_fold
where
"rsp_fold f = ((!u v. (f u v = f v u)) \<and> (!u v w. ((f u (f v w) = f (f u v) w))))"
primrec
fold1
where
"fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
(if rsp_fold f
then (
if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
) else z)"
lemma fs1_strong_cases:
fixes X :: "'a list"
shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
apply (induct X)
apply (simp)
apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
done
quotient_def
IN :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool"
where
"IN \<equiv> membship"
term membship
term IN
thm IN_def
term fold1
quotient_def
FOLD :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
"FOLD \<equiv> fold1"
term fold1
term fold
thm fold_def
quotient_def
fmap::"('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
where
"fmap \<equiv> map"
term map
term fmap
thm fmap_def
lemma memb_rsp:
fixes z
assumes a: "x \<approx> y"
shows "(z memb x) = (z memb y)"
using a by induct auto
lemma ho_memb_rsp[quotient_rsp]:
"(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
by (simp add: memb_rsp)
lemma card1_rsp:
fixes a b :: "'a list"
assumes e: "a \<approx> b"
shows "card1 a = card1 b"
using e by induct (simp_all add:memb_rsp)
lemma ho_card1_rsp[quotient_rsp]:
"(op \<approx> ===> op =) card1 card1"
by (simp add: card1_rsp)
lemma cons_rsp[quotient_rsp]:
fixes z
assumes a: "xs \<approx> ys"
shows "(z # xs) \<approx> (z # ys)"
using a by (rule list_eq.intros(5))
lemma ho_cons_rsp[quotient_rsp]:
"(op = ===> op \<approx> ===> op \<approx>) op # op #"
by (simp add: cons_rsp)
lemma append_rsp_fst:
assumes a : "l1 \<approx> l2"
shows "(l1 @ s) \<approx> (l2 @ s)"
using a
by (induct) (auto intro: list_eq.intros list_eq_refl)
lemma append_end:
shows "(e # l) \<approx> (l @ [e])"
apply (induct l)
apply (auto intro: list_eq.intros list_eq_refl)
done
lemma rev_rsp:
shows "a \<approx> rev a"
apply (induct a)
apply simp
apply (rule list_eq_refl)
apply simp_all
apply (rule list_eq.intros(6))
prefer 2
apply (rule append_rsp_fst)
apply assumption
apply (rule append_end)
done
lemma append_sym_rsp:
shows "(a @ b) \<approx> (b @ a)"
apply (rule list_eq.intros(6))
apply (rule append_rsp_fst)
apply (rule rev_rsp)
apply (rule list_eq.intros(6))
apply (rule rev_rsp)
apply (simp)
apply (rule append_rsp_fst)
apply (rule list_eq.intros(3))
apply (rule rev_rsp)
done
lemma append_rsp:
assumes a : "l1 \<approx> r1"
assumes b : "l2 \<approx> r2 "
shows "(l1 @ l2) \<approx> (r1 @ r2)"
apply (rule list_eq.intros(6))
apply (rule append_rsp_fst)
using a apply (assumption)
apply (rule list_eq.intros(6))
apply (rule append_sym_rsp)
apply (rule list_eq.intros(6))
apply (rule append_rsp_fst)
using b apply (assumption)
apply (rule append_sym_rsp)
done
lemma ho_append_rsp[quotient_rsp]:
"(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by (simp add: append_rsp)
lemma map_rsp:
assumes a: "a \<approx> b"
shows "map f a \<approx> map f b"
using a
apply (induct)
apply(auto intro: list_eq.intros)
done
lemma ho_map_rsp[quotient_rsp]:
"(op = ===> op \<approx> ===> op \<approx>) map map"
by (simp add: map_rsp)
lemma map_append:
"(map f (a @ b)) \<approx> (map f a) @ (map f b)"
by simp (rule list_eq_refl)
lemma ho_fold_rsp[quotient_rsp]:
"(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
apply (auto simp add: FUN_REL_EQ)
apply (case_tac "rsp_fold x")
prefer 2
apply (erule_tac list_eq.induct)
apply (simp_all)
apply (erule_tac list_eq.induct)
apply (simp_all)
apply (auto simp add: memb_rsp rsp_fold_def)
done
print_quotients
ML {* val qty = @{typ "'a fset"} *}
ML {* val rsp_thms =
@{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp ho_fold_rsp} *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset"; *}
ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] *}
lemma "IN x EMPTY = False"
apply(tactic {* procedure_tac @{context} @{thm m1} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply(tactic {* all_inj_repabs_tac @{context} [rel_refl] [trans2] 1 *})
apply(tactic {* clean_tac @{context} 1*})
done
lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
by (tactic {* lift_tac_fset @{context} @{thm m2} 1 *})
lemma "INSERT a (INSERT a x) = INSERT a x"
apply (tactic {* lift_tac_fset @{context} @{thm list_eq.intros(4)} 1 *})
done
lemma "x = xa \<Longrightarrow> INSERT a x = INSERT a xa"
apply (tactic {* lift_tac_fset @{context} @{thm list_eq.intros(5)} 1 *})
done
lemma "CARD x = Suc n \<Longrightarrow> (\<exists>a b. \<not> IN a b & x = INSERT a b)"
apply (tactic {* lift_tac_fset @{context} @{thm card1_suc} 1 *})
done
lemma "(\<not> IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))"
apply (tactic {* lift_tac_fset @{context} @{thm not_mem_card1} 1 *})
done
lemma "FOLD f g (z::'b) (INSERT a x) =
(if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"
apply(tactic {* lift_tac_fset @{context} @{thm fold1.simps(2)} 1 *})
done
ML {* fun inj_repabs_tac_fset lthy = inj_repabs_tac lthy [rel_refl] [trans2] *}
lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"
apply (tactic {* lift_tac_fset @{context} @{thm map_append} 1 *})
done
lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)"
apply (tactic {* lift_tac_fset @{context} @{thm append_assoc} 1 *})
done
lemma cheat: "P" sorry
lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
prefer 2
apply(tactic {* clean_tac @{context} 1 *})
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 8 *) (* = reflexivity arising from cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* A *) (* application if type needs lifting *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* D *) (* reflexivity of basic relations *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 8 *) (* = reflexivity arising from cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 8 *) (* = reflexivity arising from cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* C *) (* = and extensionality *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* B *) (* Cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 8 *) (* = reflexivity arising from cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* A *) (* application if type needs lifting *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* A *) (* application if type needs lifting *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* A *) (* application if type needs lifting *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* A *) (* application if type needs lifting *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 7 *) (* respectfulness *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 8 *) (* = reflexivity arising from cong *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* A *) (* application if type needs lifting *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* E *) (* R x y assumptions *)
done
lemma list_induct_part:
assumes a: "P (x :: 'a list) ([] :: 'c list)"
assumes b: "\<And>e t. P x t \<Longrightarrow> P x (e # t)"
shows "P x l"
apply (rule_tac P="P x" in list.induct)
apply (rule a)
apply (rule b)
apply (assumption)
done
ML {* quot *}
thm quotient_thm
lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
done
lemma "P (x :: 'a fset) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
done
lemma "P (x :: 'a fset) ([] :: 'c list) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (e # t)) \<Longrightarrow> P x l"
apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
done
quotient fset2 = "'a list" / "list_eq"
apply(rule equiv_list_eq)
done
quotient_def
EMPTY2 :: "'a fset2"
where
"EMPTY2 \<equiv> ([]::'a list)"
quotient_def
INSERT2 :: "'a \<Rightarrow> 'a fset2 \<Rightarrow> 'a fset2"
where
"INSERT2 \<equiv> op #"
ML {* val quot = @{thms QUOTIENT_fset QUOTIENT_fset2} *}
ML {* fun inj_repabs_tac_fset lthy = inj_repabs_tac lthy [rel_refl] [trans2] *}
ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] *}
lemma "P (x :: 'a fset2) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
done
lemma "P (x :: 'a fset) (EMPTY2 :: 'c fset2) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT2 e t)) \<Longrightarrow> P x l"
apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
done
quotient_def
fset_rec::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
"fset_rec \<equiv> list_rec"
quotient_def
fset_case::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
"fset_case \<equiv> list_case"
(* Probably not true without additional assumptions about the function *)
lemma list_rec_rsp[quotient_rsp]:
"(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
apply (auto simp add: FUN_REL_EQ)
apply (erule_tac list_eq.induct)
apply (simp_all)
sorry
lemma list_case_rsp[quotient_rsp]:
"(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
apply (auto simp add: FUN_REL_EQ)
sorry
ML {* val rsp_thms = @{thms list_rec_rsp list_case_rsp} @ rsp_thms *}
ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] *}
lemma "fset_rec (f1::'t) x (INSERT a xa) = x a xa (fset_rec f1 x xa)"
apply (tactic {* lift_tac_fset @{context} @{thm list.recs(2)} 1 *})
done
lemma "fset_case (f1::'t) f2 (INSERT a xa) = f2 a xa"
apply (tactic {* lift_tac_fset @{context} @{thm list.cases(2)} 1 *})
done
end