LamEx.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Fri, 27 Nov 2009 08:15:23 +0100
changeset 416 3f3927f793d4
parent 389 d67240113f68
child 417 cb81b40137c2
permissions -rw-r--r--
Removing arguments of tactics: absrep, rel_refl, reps_same are computed.

theory LamEx
imports Nominal QuotMain
begin

atom_decl name

thm abs_fresh(1)

nominal_datatype rlam =
  rVar "name"
| rApp "rlam" "rlam"
| rLam "name" "rlam"

print_theorems

function
  rfv :: "rlam \<Rightarrow> name set"
where
  rfv_var: "rfv (rVar a) = {a}"
| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
| rfv_lam: "rfv (rLam a t) = (rfv t) - {a}"
sorry

termination rfv sorry

inductive
  alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
where
  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
| a3: "\<lbrakk>t \<approx> ([(a,b)]\<bullet>s); a \<notin> rfv (rLam b t)\<rbrakk> \<Longrightarrow> rLam a t \<approx> rLam b s"

print_theorems

lemma alpha_refl:
  fixes t::"rlam"
  shows "t \<approx> t"
  apply(induct t rule: rlam.induct)
  apply(simp add: a1)
  apply(simp add: a2)
  apply(rule a3)
  apply(subst pt_swap_bij'')
  apply(rule pt_name_inst)
  apply(rule at_name_inst)
  apply(simp)
  apply(simp)
  done

lemma alpha_EQUIV:
  shows "EQUIV alpha"
sorry

quotient lam = rlam / alpha
  apply(rule alpha_EQUIV)
  done

print_quotients

quotient_def 
  Var :: "name \<Rightarrow> lam"
where
  "Var \<equiv> rVar"

quotient_def 
  App :: "lam \<Rightarrow> lam \<Rightarrow> lam"
where
  "App \<equiv> rApp"

quotient_def 
  Lam :: "name \<Rightarrow> lam \<Rightarrow> lam"
where
  "Lam \<equiv> rLam"

thm Var_def
thm App_def
thm Lam_def

quotient_def 
  fv :: "lam \<Rightarrow> name set"
where
  "fv \<equiv> rfv"

thm fv_def

(* definition of overloaded permutation function *)
(* for the lifted type lam                       *)
overloading
  perm_lam \<equiv> "perm :: 'x prm \<Rightarrow> lam \<Rightarrow> lam"   (unchecked)
begin

quotient_def 
  perm_lam :: "'x prm \<Rightarrow> lam \<Rightarrow> lam"
where
  "perm_lam \<equiv> (perm::'x prm \<Rightarrow> rlam \<Rightarrow> rlam)"

end

(*quotient_def (for lam)
  abs_fun_lam :: "'x prm \<Rightarrow> lam \<Rightarrow> lam"
where
  "perm_lam \<equiv> (perm::'x prm \<Rightarrow> rlam \<Rightarrow> rlam)"*)


thm perm_lam_def

(* lemmas that need to lift *)
lemma pi_var_com:
  fixes pi::"'x prm"
  shows "(pi\<bullet>rVar a) \<approx> rVar (pi\<bullet>a)"
  sorry

lemma pi_app_com:
  fixes pi::"'x prm"
  shows "(pi\<bullet>rApp t1 t2) \<approx> rApp (pi\<bullet>t1) (pi\<bullet>t2)"
  sorry

lemma pi_lam_com:
  fixes pi::"'x prm"
  shows "(pi\<bullet>rLam a t) \<approx> rLam (pi\<bullet>a) (pi\<bullet>t)"
  sorry

lemma real_alpha:
  assumes "t = [(a,b)]\<bullet>s" "a\<sharp>[b].s"
  shows "Lam a t = Lam b s"
sorry

lemma perm_rsp: 
  "(op = ===> alpha ===> alpha) op \<bullet> op \<bullet>"
  apply(auto)
  (* this is propably true if some type conditions are imposed ;o) *)
  sorry

lemma fresh_rsp: 
  "(op = ===> alpha ===> op =) fresh fresh" 
  apply(auto)
  (* this is probably only true if some type conditions are imposed *)
  sorry

lemma rVar_rsp: "(op = ===> alpha) rVar rVar"
  apply(auto)
  apply(rule a1)
  apply(simp)
  done

lemma rApp_rsp: "(alpha ===> alpha ===> alpha) rApp rApp"
  apply(auto)
  apply(rule a2)
  apply (assumption)
  apply (assumption)
  done

lemma rLam_rsp: "(op = ===> alpha ===> alpha) rLam rLam"
  apply(auto)
  apply(rule a3)
  apply(rule_tac t="[(x,x)]\<bullet>y" and s="y" in subst)
  apply(rule sym)
  apply(rule trans)
  apply(rule pt_name3)
  apply(rule at_ds1[OF at_name_inst])
  apply(simp add: pt_name1)
  apply(assumption)
  apply(simp add: abs_fresh)
  done

lemma rfv_rsp: "(alpha ===> op =) rfv rfv"
  sorry

lemma rvar_inject: "rVar a \<approx> rVar b = (a = b)"
apply (auto)
apply (erule alpha.cases)
apply (simp_all add: rlam.inject alpha_refl)
done

ML {* val qty = @{typ "lam"} *}
ML {* val defs = @{thms Var_def App_def Lam_def perm_lam_def fv_def} *}
ML {* val rsp_thms = @{thms perm_rsp fresh_rsp rVar_rsp rApp_rsp rLam_rsp rfv_rsp} @
  @{thms ho_all_prs ho_ex_prs} *}

ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val consts = lookup_quot_consts defs *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "lam" *}
ML {* fun lift_tac_lam lthy t = lift_tac lthy t rel_eqv rel_refl rty [quot] trans2 rsp_thms reps_same absrep defs *}

lemma pi_var: "(pi\<Colon>('x \<times> 'x) list) \<bullet> Var a = Var (pi \<bullet> a)"
apply (tactic {* lift_tac_lam @{context} @{thm pi_var_com} 1 *})
done

lemma pi_app: "(pi\<Colon>('x \<times> 'x) list) \<bullet> App (x\<Colon>lam) (xa\<Colon>lam) = App (pi \<bullet> x) (pi \<bullet> xa)"
apply (tactic {* lift_tac_lam @{context} @{thm pi_app_com} 1 *})
done

lemma pi_lam: "(pi\<Colon>('x \<times> 'x) list) \<bullet> Lam (a\<Colon>name) (x\<Colon>lam) = Lam (pi \<bullet> a) (pi \<bullet> x)"
apply (tactic {* lift_tac_lam @{context} @{thm pi_lam_com} 1 *})
done

lemma fv_var: "fv (Var (a\<Colon>name)) = {a}"
apply (tactic {* lift_tac_lam @{context} @{thm rfv_var} 1 *})
done

lemma fv_app: "fv (App (x\<Colon>lam) (xa\<Colon>lam)) = fv x \<union> fv xa"
apply (tactic {* lift_tac_lam @{context} @{thm rfv_app} 1 *})
done

lemma fv_lam: "fv (Lam (a\<Colon>name) (x\<Colon>lam)) = fv x - {a}"
apply (tactic {* lift_tac_lam @{context} @{thm rfv_lam} 1 *})
done

lemma a1: "(a\<Colon>name) = (b\<Colon>name) \<Longrightarrow> Var a = Var b"
apply (tactic {* lift_tac_lam @{context} @{thm a1} 1 *})
done

lemma a2: "\<lbrakk>(x\<Colon>lam) = (xa\<Colon>lam); (xb\<Colon>lam) = (xc\<Colon>lam)\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
apply (tactic {* lift_tac_lam @{context} @{thm a2} 1 *})
done

lemma a3: "\<lbrakk>(x\<Colon>lam) = [(a\<Colon>name, b\<Colon>name)] \<bullet> (xa\<Colon>lam); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> Lam a x = Lam b xa"
apply (tactic {* lift_tac_lam @{context} @{thm a3} 1 *})
done

lemma alpha_cases: "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
     \<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
     \<And>x a b xa. \<lbrakk>a1 = Lam a x; a2 = Lam b xa; x = [(a, b)] \<bullet> xa; a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> P\<rbrakk>
    \<Longrightarrow> P"
apply (tactic {* lift_tac_lam @{context} @{thm alpha.cases} 1 *})
done

lemma alpha_induct: "\<lbrakk>(qx\<Colon>lam) = (qxa\<Colon>lam); \<And>(a\<Colon>name) b\<Colon>name. a = b \<Longrightarrow> (qxb\<Colon>lam \<Rightarrow> lam \<Rightarrow> bool) (Var a) (Var b);
     \<And>(x\<Colon>lam) (xa\<Colon>lam) (xb\<Colon>lam) xc\<Colon>lam. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
     \<And>(x\<Colon>lam) (a\<Colon>name) (b\<Colon>name) xa\<Colon>lam.
        \<lbrakk>x = [(a, b)] \<bullet> xa; qxb x ([(a, b)] \<bullet> xa); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> qxb (Lam a x) (Lam b xa)\<rbrakk>
    \<Longrightarrow> qxb qx qxa"
apply (tactic {* lift_tac_lam @{context} @{thm alpha.induct} 1 *})
done

lemma var_inject: "(Var a = Var b) = (a = b)"
apply (tactic {* lift_tac_lam @{context} @{thm rvar_inject} 1 *})
done

lemma var_supp:
  shows "supp (Var a) = ((supp a)::name set)"
  apply(simp add: supp_def)
  apply(simp add: pi_var)
  apply(simp add: var_inject)
  done

lemma var_fresh:
  fixes a::"name"
  shows "(a\<sharp>(Var b)) = (a\<sharp>b)"
  apply(simp add: fresh_def)
  apply(simp add: var_supp)
  done












(* Construction Site code *)








fun
  option_map::"('a \<Rightarrow> 'b) \<Rightarrow> ('a noption) \<Rightarrow> ('b noption)"
where
  "option_map f (nSome x) = nSome (f x)"
| "option_map f nNone = nNone"

fun
  option_rel
where
  "option_rel r (nSome x) (nSome y) = r x y"
| "option_rel r _ _ = False"

declare [[map noption = (option_map, option_rel)]]

lemma "option_map id = id"
sorry

lemma OPT_QUOTIENT:
  assumes q: "QUOTIENT R Abs Rep"
  shows "QUOTIENT (option_rel R) (option_map Abs) (option_map Rep)"
  apply (unfold QUOTIENT_def)
  apply (auto)
  using q
  apply (unfold QUOTIENT_def)
  apply (case_tac "a :: 'b noption")
  apply (simp)
  apply (simp)
  apply (case_tac "a :: 'b noption")
  apply (simp only: option_map.simps)
  apply (subst option_rel.simps)
  (* Simp starts hanging so don't know how to continue *)
  sorry