Manually lifted Map_Append.
theory LamEx
imports Nominal QuotMain
begin
atom_decl name
nominal_datatype rlam =
rVar "name"
| rApp "rlam" "rlam"
| rLam "name" "rlam"
inductive
alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
where
a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
| a3: "\<lbrakk>t \<approx> ([(a,b)]\<bullet>s); a\<sharp>s\<rbrakk> \<Longrightarrow> rLam a t \<approx> rLam b s"
quotient lam = rlam / alpha
apply -
sorry
print_quotients
local_setup {*
make_const_def @{binding Var} @{term "rVar"} NoSyn @{typ "rlam"} @{typ "lam"} #> snd #>
make_const_def @{binding App} @{term "rApp"} NoSyn @{typ "rlam"} @{typ "lam"} #> snd #>
make_const_def @{binding Lam} @{term "rLam"} NoSyn @{typ "rlam"} @{typ "lam"} #> snd
*}
lemma real_alpha:
assumes "t = ([(a,b)]\<bullet>s)" "a\<sharp>s"
shows "Lam a t = Lam b s"
sorry