IntEx.thy
author Christian Urban <urbanc@in.tum.de>
Sat, 24 Oct 2009 22:52:23 +0200
changeset 181 3e53081ad53a
child 184 f3c192574d2a
permissions -rw-r--r--
added another example file about integers (see HOL/Int.thy)

theory IntEx
imports QuotMain
begin

fun
  intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" 
where
  "intrel (x, y) (u, v) = (x + v = u + y)"

quotient my_int = "nat \<times> nat" / intrel
  apply(unfold EQUIV_def)
  apply(auto simp add: mem_def expand_fun_eq)
  done

typ my_int

local_setup {*
  make_const_def @{binding "ZERO"} @{term "(0::nat, 0::nat)"} NoSyn @{typ "nat \<times> nat"} @{typ "my_int"} #> snd
*}

term ZERO
thm ZERO_def

local_setup {*
  make_const_def @{binding ONE} @{term "(1::nat, 0::nat)"} NoSyn @{typ "nat \<times> nat"} @{typ "my_int"} #> snd
*}

term ONE
thm ONE_def

fun
  my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_plus (x, y) (u, v) = (x + u, y + v)"

local_setup {*
  make_const_def @{binding PLUS} @{term "my_plus"} NoSyn @{typ "nat \<times> nat"} @{typ "my_int"} #> snd
*}

term PLUS
thm PLUS_def

fun
  my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_neg (x, y) = (y, x)"

local_setup {*
  make_const_def @{binding NEG} @{term "my_neg"} NoSyn @{typ "nat \<times> nat"} @{typ "my_int"} #> snd
*}

term NEG
thm NEG_def

definition
  MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
  "MINUS z w = PLUS z (NEG w)"

fun
  my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"

local_setup {*
  make_const_def @{binding MULT} @{term "my_mult"} NoSyn @{typ "nat \<times> nat"} @{typ "my_int"} #> snd
*}

term MULT
thm MULT_def

(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
  my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
  "my_le (x, y) (u, v) = (x+v \<le> u+y)"

local_setup {*
  make_const_def @{binding LE} @{term "my_le"} NoSyn @{typ "nat \<times> nat"} @{typ "my_int"} #> snd
*}

term LE
thm LE_def

definition
  LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
  "LESS z w = (LE z w \<and> z \<noteq> w)"

term LESS
thm LESS_def


definition
  ABS :: "my_int \<Rightarrow> my_int"
where
  "ABS i = (if (LESS i ZERO) then (NEG i) else i)"

definition
  SIGN :: "my_int \<Rightarrow> my_int"
where
 "SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"

 

lemma 
  fixes i j k::"my_int"
  shows "(PLUS (PLUS i j) k) = (PLUS i (PLUS j k))"
  apply(unfold PLUS_def)
  apply(simp add: expand_fun_eq)
  sorry