Avoid mentioning other nominal datatypes as it makes things too complicated.
(* Title: Quotient.thy
Author: Cezary Kaliszyk and Christian Urban
*)
theory Quotient
imports Plain ATP_Linkup
uses
("quotient_info.ML")
("quotient_typ.ML")
("quotient_def.ML")
("quotient_term.ML")
("quotient_tacs.ML")
begin
text {*
Basic definition for equivalence relations
that are represented by predicates.
*}
definition
"equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
definition
"reflp E \<equiv> \<forall>x. E x x"
definition
"symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
definition
"transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
lemma equivp_reflp_symp_transp:
shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
by blast
lemma equivp_reflp:
shows "equivp E \<Longrightarrow> E x x"
by (simp only: equivp_reflp_symp_transp reflp_def)
lemma equivp_symp:
shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x"
by (metis equivp_reflp_symp_transp symp_def)
lemma equivp_transp:
shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z"
by (metis equivp_reflp_symp_transp transp_def)
lemma equivpI:
assumes "reflp R" "symp R" "transp R"
shows "equivp R"
using assms by (simp add: equivp_reflp_symp_transp)
lemma identity_equivp:
shows "equivp (op =)"
unfolding equivp_def
by auto
text {* Partial equivalences: not yet used anywhere *}
definition
"part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
lemma equivp_implies_part_equivp:
assumes a: "equivp E"
shows "part_equivp E"
using a
unfolding equivp_def part_equivp_def
by auto
text {* Composition of Relations *}
abbreviation
rel_conj (infixr "OOO" 75)
where
"r1 OOO r2 \<equiv> r1 OO r2 OO r1"
lemma eq_comp_r:
shows "((op =) OOO R) = R"
by (auto simp add: expand_fun_eq)
section {* Respects predicate *}
definition
Respects
where
"Respects R x \<equiv> R x x"
lemma in_respects:
shows "(x \<in> Respects R) = R x x"
unfolding mem_def Respects_def
by simp
section {* Function map and function relation *}
definition
fun_map (infixr "--->" 55)
where
[simp]: "fun_map f g h x = g (h (f x))"
definition
fun_rel (infixr "===>" 55)
where
[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
lemma fun_map_id:
shows "(id ---> id) = id"
by (simp add: expand_fun_eq id_def)
lemma fun_rel_eq:
shows "((op =) ===> (op =)) = (op =)"
by (simp add: expand_fun_eq)
lemma fun_rel_id:
assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
shows "(R1 ===> R2) f g"
using a by simp
lemma fun_rel_id_asm:
assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
shows "A \<longrightarrow> (R1 ===> R2) f g"
using a by auto
section {* Quotient Predicate *}
definition
"Quotient E Abs Rep \<equiv>
(\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
(\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
lemma Quotient_abs_rep:
assumes a: "Quotient E Abs Rep"
shows "Abs (Rep a) = a"
using a
unfolding Quotient_def
by simp
lemma Quotient_rep_reflp:
assumes a: "Quotient E Abs Rep"
shows "E (Rep a) (Rep a)"
using a
unfolding Quotient_def
by blast
lemma Quotient_rel:
assumes a: "Quotient E Abs Rep"
shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
using a
unfolding Quotient_def
by blast
lemma Quotient_rel_rep:
assumes a: "Quotient R Abs Rep"
shows "R (Rep a) (Rep b) = (a = b)"
using a
unfolding Quotient_def
by metis
lemma Quotient_rep_abs:
assumes a: "Quotient R Abs Rep"
shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
using a unfolding Quotient_def
by blast
lemma Quotient_rel_abs:
assumes a: "Quotient E Abs Rep"
shows "E r s \<Longrightarrow> Abs r = Abs s"
using a unfolding Quotient_def
by blast
lemma Quotient_symp:
assumes a: "Quotient E Abs Rep"
shows "symp E"
using a unfolding Quotient_def symp_def
by metis
lemma Quotient_transp:
assumes a: "Quotient E Abs Rep"
shows "transp E"
using a unfolding Quotient_def transp_def
by metis
lemma identity_quotient:
shows "Quotient (op =) id id"
unfolding Quotient_def id_def
by blast
lemma fun_quotient:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
using q1 q2
unfolding Quotient_def
unfolding expand_fun_eq
by simp
moreover
have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
using q1 q2
unfolding Quotient_def
by (simp (no_asm)) (metis)
moreover
have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
(rep1 ---> abs2) r = (rep1 ---> abs2) s)"
unfolding expand_fun_eq
apply(auto)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
done
ultimately
show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
unfolding Quotient_def by blast
qed
lemma abs_o_rep:
assumes a: "Quotient R Abs Rep"
shows "Abs o Rep = id"
unfolding expand_fun_eq
by (simp add: Quotient_abs_rep[OF a])
lemma equals_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R xa xb" "R ya yb"
shows "R xa ya = R xb yb"
using a Quotient_symp[OF q] Quotient_transp[OF q]
unfolding symp_def transp_def
by blast
lemma lambda_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by simp
lemma lambda_prs1:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
unfolding expand_fun_eq
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by simp
lemma rep_abs_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R x1 (Rep (Abs x2))"
using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
by metis
lemma rep_abs_rsp_left:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R (Rep (Abs x1)) x2"
using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
by metis
text{*
In the following theorem R1 can be instantiated with anything,
but we know some of the types of the Rep and Abs functions;
so by solving Quotient assumptions we can get a unique R1 that
will be provable; which is why we need to use apply_rsp and
not the primed version *}
lemma apply_rsp:
fixes f g::"'a \<Rightarrow> 'c"
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
using a by simp
lemma apply_rsp':
assumes a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
using a by simp
section {* lemmas for regularisation of ball and bex *}
lemma ball_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Ball (Respects R) P = (All P)"
using a
unfolding equivp_def
by (auto simp add: in_respects)
lemma bex_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Bex (Respects R) P = (Ex P)"
using a
unfolding equivp_def
by (auto simp add: in_respects)
lemma ball_reg_right:
assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
shows "All P \<longrightarrow> Ball R Q"
using a by (metis COMBC_def Collect_def Collect_mem_eq)
lemma bex_reg_left:
assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
shows "Bex R Q \<longrightarrow> Ex P"
using a by (metis COMBC_def Collect_def Collect_mem_eq)
lemma ball_reg_left:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
using a by (metis equivp_reflp in_respects)
lemma bex_reg_right:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
using a by (metis equivp_reflp in_respects)
lemma ball_reg_eqv_range:
fixes P::"'a \<Rightarrow> bool"
and x::"'a"
assumes a: "equivp R2"
shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
apply(rule iffI)
apply(rule allI)
apply(drule_tac x="\<lambda>y. f x" in bspec)
apply(simp add: in_respects)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply(simp add: reflp_def)
apply(simp)
apply(simp)
done
lemma bex_reg_eqv_range:
assumes a: "equivp R2"
shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
apply(auto)
apply(rule_tac x="\<lambda>y. f x" in bexI)
apply(simp)
apply(simp add: Respects_def in_respects)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply(simp add: reflp_def)
done
(* Next four lemmas are unused *)
lemma all_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "All P"
shows "All Q"
using a b by (metis)
lemma ex_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "Ex P"
shows "Ex Q"
using a b by metis
lemma ball_reg:
assumes a: "!x :: 'a. (R x --> P x --> Q x)"
and b: "Ball R P"
shows "Ball R Q"
using a b by (metis COMBC_def Collect_def Collect_mem_eq)
lemma bex_reg:
assumes a: "!x :: 'a. (R x --> P x --> Q x)"
and b: "Bex R P"
shows "Bex R Q"
using a b by (metis COMBC_def Collect_def Collect_mem_eq)
lemma ball_all_comm:
assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
using assms by auto
lemma bex_ex_comm:
assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
using assms by auto
section {* Bounded abstraction *}
definition
Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
where
"x \<in> p \<Longrightarrow> Babs p m x = m x"
lemma babs_rsp:
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g"
shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
apply (auto simp add: Babs_def in_respects)
apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
using a apply (simp add: Babs_def)
apply (simp add: in_respects)
using Quotient_rel[OF q]
by metis
lemma babs_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
apply (rule ext)
apply (simp)
apply (subgoal_tac "Rep1 x \<in> Respects R1")
apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
apply (simp add: in_respects Quotient_rel_rep[OF q1])
done
lemma babs_simp:
assumes q: "Quotient R1 Abs Rep"
shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
apply(rule iffI)
apply(simp_all only: babs_rsp[OF q])
apply(auto simp add: Babs_def)
apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
apply(metis Babs_def)
apply (simp add: in_respects)
using Quotient_rel[OF q]
by metis
(* If a user proves that a particular functional relation
is an equivalence this may be useful in regularising *)
lemma babs_reg_eqv:
shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
(* 3 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
assumes a: "(R ===> (op =)) f g"
shows "Ball (Respects R) f = Ball (Respects R) g"
using a by (simp add: Ball_def in_respects)
lemma bex_rsp:
assumes a: "(R ===> (op =)) f g"
shows "(Bex (Respects R) f = Bex (Respects R) g)"
using a by (simp add: Bex_def in_respects)
lemma bex1_rsp:
assumes a: "(R ===> (op =)) f g"
shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
using a
by (simp add: Ex1_def in_respects) auto
(* 2 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
assumes a: "Quotient R absf repf"
shows "Ball (Respects R) ((absf ---> id) f) = All f"
using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
by metis
lemma ex_prs:
assumes a: "Quotient R absf repf"
shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
by metis
section {* Bex1_rel quantifier *}
definition
Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
where
"Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
lemma bex1_rel_aux:
"\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
unfolding Bex1_rel_def
apply (erule conjE)+
apply (erule bexE)
apply rule
apply (rule_tac x="xa" in bexI)
apply metis
apply metis
apply rule+
apply (erule_tac x="xaa" in ballE)
prefer 2
apply (metis)
apply (erule_tac x="ya" in ballE)
prefer 2
apply (metis)
apply (metis in_respects)
done
lemma bex1_rel_aux2:
"\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
unfolding Bex1_rel_def
apply (erule conjE)+
apply (erule bexE)
apply rule
apply (rule_tac x="xa" in bexI)
apply metis
apply metis
apply rule+
apply (erule_tac x="xaa" in ballE)
prefer 2
apply (metis)
apply (erule_tac x="ya" in ballE)
prefer 2
apply (metis)
apply (metis in_respects)
done
lemma bex1_rel_rsp:
assumes a: "Quotient R absf repf"
shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
apply simp
apply clarify
apply rule
apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
apply (erule bex1_rel_aux2)
apply assumption
done
lemma ex1_prs:
assumes a: "Quotient R absf repf"
shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
apply simp
apply (subst Bex1_rel_def)
apply (subst Bex_def)
apply (subst Ex1_def)
apply simp
apply rule
apply (erule conjE)+
apply (erule_tac exE)
apply (erule conjE)
apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
apply (rule_tac x="absf x" in exI)
apply (simp)
apply rule+
using a unfolding Quotient_def
apply metis
apply rule+
apply (erule_tac x="x" in ballE)
apply (erule_tac x="y" in ballE)
apply simp
apply (simp add: in_respects)
apply (simp add: in_respects)
apply (erule_tac exE)
apply rule
apply (rule_tac x="repf x" in exI)
apply (simp only: in_respects)
apply rule
apply (metis Quotient_rel_rep[OF a])
using a unfolding Quotient_def apply (simp)
apply rule+
using a unfolding Quotient_def in_respects
apply metis
done
lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
apply (simp add: Ex1_def Bex1_rel_def in_respects)
apply clarify
apply auto
apply (rule bexI)
apply assumption
apply (simp add: in_respects)
apply (simp add: in_respects)
apply auto
done
section {* Various respects and preserve lemmas *}
lemma quot_rel_rsp:
assumes a: "Quotient R Abs Rep"
shows "(R ===> R ===> op =) R R"
apply(rule fun_rel_id)+
apply(rule equals_rsp[OF a])
apply(assumption)+
done
lemma o_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
unfolding o_def expand_fun_eq by simp
lemma o_rsp:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
and a1: "(R2 ===> R3) f1 f2"
and a2: "(R1 ===> R2) g1 g2"
shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
using a1 a2 unfolding o_def expand_fun_eq
by (auto)
lemma cond_prs:
assumes a: "Quotient R absf repf"
shows "absf (if a then repf b else repf c) = (if a then b else c)"
using a unfolding Quotient_def by auto
lemma if_prs:
assumes q: "Quotient R Abs Rep"
shows "Abs (If a (Rep b) (Rep c)) = If a b c"
using Quotient_abs_rep[OF q] by auto
(* q not used *)
lemma if_rsp:
assumes q: "Quotient R Abs Rep"
and a: "a1 = a2" "R b1 b2" "R c1 c2"
shows "R (If a1 b1 c1) (If a2 b2 c2)"
using a by auto
lemma let_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
lemma let_rsp:
assumes q1: "Quotient R1 Abs1 Rep1"
and a1: "(R1 ===> R2) f g"
and a2: "R1 x y"
shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
using apply_rsp[OF q1 a1] a2 by auto
locale quot_type =
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
assumes equivp: "equivp R"
and rep_prop: "\<And>y. \<exists>x. Rep y = R x"
and rep_inverse: "\<And>x. Abs (Rep x) = x"
and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
begin
definition
abs::"'a \<Rightarrow> 'b"
where
"abs x \<equiv> Abs (R x)"
definition
rep::"'b \<Rightarrow> 'a"
where
"rep a = Eps (Rep a)"
lemma homeier_lem9:
shows "R (Eps (R x)) = R x"
proof -
have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
then have "R x (Eps (R x))" by (rule someI)
then show "R (Eps (R x)) = R x"
using equivp unfolding equivp_def by simp
qed
theorem homeier_thm10:
shows "abs (rep a) = a"
unfolding abs_def rep_def
proof -
from rep_prop
obtain x where eq: "Rep a = R x" by auto
have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
also have "\<dots> = Abs (R x)" using homeier_lem9 by simp
also have "\<dots> = Abs (Rep a)" using eq by simp
also have "\<dots> = a" using rep_inverse by simp
finally
show "Abs (R (Eps (Rep a))) = a" by simp
qed
lemma homeier_lem7:
shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
proof -
have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject)
also have "\<dots> = ?LHS" by (simp add: abs_inverse)
finally show "?LHS = ?RHS" by simp
qed
theorem homeier_thm11:
shows "R r r' = (abs r = abs r')"
unfolding abs_def
by (simp only: equivp[simplified equivp_def] homeier_lem7)
lemma rep_refl:
shows "R (rep a) (rep a)"
unfolding rep_def
by (simp add: equivp[simplified equivp_def])
lemma rep_abs_rsp:
shows "R f (rep (abs g)) = R f g"
and "R (rep (abs g)) f = R g f"
by (simp_all add: homeier_thm10 homeier_thm11)
lemma Quotient:
shows "Quotient R abs rep"
unfolding Quotient_def
apply(simp add: homeier_thm10)
apply(simp add: rep_refl)
apply(subst homeier_thm11[symmetric])
apply(simp add: equivp[simplified equivp_def])
done
end
section {* ML setup *}
text {* Auxiliary data for the quotient package *}
use "quotient_info.ML"
declare [[map "fun" = (fun_map, fun_rel)]]
lemmas [quot_thm] = fun_quotient
lemmas [quot_respect] = quot_rel_rsp
lemmas [quot_equiv] = identity_equivp
text {* Lemmas about simplifying id's. *}
lemmas [id_simps] =
id_def[symmetric]
fun_map_id
id_apply
id_o
o_id
eq_comp_r
text {* Translation functions for the lifting process. *}
use "quotient_term.ML"
text {* Definitions of the quotient types. *}
use "quotient_typ.ML"
text {* Definitions for quotient constants. *}
use "quotient_def.ML"
text {*
An auxiliary constant for recording some information
about the lifted theorem in a tactic.
*}
definition
"Quot_True x \<equiv> True"
lemma
shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
and QT_ex: "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
and QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
and QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
and QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
by (simp_all add: Quot_True_def ext)
lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
by (simp add: Quot_True_def)
text {* Tactics for proving the lifted theorems *}
use "quotient_tacs.ML"
section {* Methods / Interface *}
method_setup lifting =
{* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.lift_tac ctxt thms))) *}
{* lifts theorems to quotient types *}
method_setup lifting_setup =
{* Attrib.thm >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.procedure_tac ctxt thms))) *}
{* sets up the three goals for the quotient lifting procedure *}
method_setup regularize =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.regularize_tac ctxt))) *}
{* proves the regularization goals from the quotient lifting procedure *}
method_setup injection =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.all_injection_tac ctxt))) *}
{* proves the rep/abs injection goals from the quotient lifting procedure *}
method_setup cleaning =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.clean_tac ctxt))) *}
{* proves the cleaning goals from the quotient lifting procedure *}
attribute_setup quot_lifted =
{* Scan.succeed Quotient_Tacs.lifted_attrib *}
{* lifts theorems to quotient types *}
no_notation
rel_conj (infixr "OOO" 75) and
fun_map (infixr "--->" 55) and
fun_rel (infixr "===>" 55)
end