Ported Stefan's permutation code, still needs some localizing.
theory Perm
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs"
begin
atom_decl name
datatype rtrm1 =
rVr1 "name"
| rAp1 "rtrm1" "rtrm1 list"
| rLm1 "name" "rtrm1"
| rLt1 "bp" "rtrm1" "rtrm1"
and bp =
BUnit
| BVr "name"
| BPr "bp" "bp"
ML {*
open Datatype_Aux (* typ_of_dtyp, DtRec, ... *)
*}
instantiation rtrm1 and bp :: pt
begin
ML {*
val {descr, induct, ...} = Datatype.the_info @{theory} "Perm.rtrm1";
val new_type_names = ["rtrm1", "bp"];
(* TODO: [] should be the sorts that we'll take from the specification *)
val sorts = [];
fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
val perm_names' = Datatype_Prop.indexify_names (map (fn (i, _) =>
"permute_" ^ name_of_typ (nth_dtyp i)) descr);
val perm_names = replicate (length new_type_names) @{const_name permute} @
map (Sign.full_bname @{theory}) (List.drop (perm_names', length new_type_names));
val perm_types = map (fn (i, _) =>
let val T = nth_dtyp i
in @{typ perm} --> T --> T end) descr;
val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
(* TODO: Next line only needed after instantiation *)
val perm_names_types = perm_names ~~ perm_types;
val perm_names_types' = perm_names' ~~ perm_types;
val pi = Free ("pi", @{typ perm});
fun permute ty = Const (@{const_name permute}, @{typ perm} --> ty --> ty);
val minus_perm = Const (@{const_name minus}, @{typ perm} --> @{typ perm});
*}
ML {*
val perm_eqs = maps (fn (i, (_, _, constrs)) =>
let val T = nth_dtyp i
in map (fn (cname, dts) =>
let
val Ts = map (typ_of_dtyp descr sorts) dts;
val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
val args = map Free (names ~~ Ts);
val c = Const (cname, Ts ---> T);
fun perm_arg (dt, x) =
let val T = type_of x
in
if is_rec_type dt then
let val (Us, _) = strip_type T
in list_abs (map (pair "x") Us,
Free (nth perm_names_types' (body_index dt)) $ pi $
list_comb (x, map (fn (i, U) =>
(permute U) $ (minus_perm $ pi) $ Bound i)
((length Us - 1 downto 0) ~~ Us)))
end
else (permute T) $ pi $ x
end;
in
(Attrib.empty_binding, HOLogic.mk_Trueprop (HOLogic.mk_eq
(Free (nth perm_names_types' i) $
Free ("pi", @{typ perm}) $ list_comb (c, args),
list_comb (c, map perm_arg (dts ~~ args)))))
end) constrs
end) descr;
*}
local_setup {*
snd o (Primrec.add_primrec
(map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs)
*}
print_theorems
ML {*
val perm_empty_thms =
let
val gl =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map (fn ((s, T), x) => HOLogic.mk_eq
(Const (s, @{typ perm} --> T --> T) $
@{term "0 :: perm"} $ Free (x, T),
Free (x, T)))
(perm_names ~~
map body_type perm_types ~~ perm_indnames)));
fun tac _ =
EVERY [indtac induct perm_indnames 1,
ALLGOALS (asm_full_simp_tac @{simpset})];
in
map Drule.export_without_context (List.take (split_conj_thm
(Goal.prove_global @{theory} [] [] gl tac),
length new_type_names))
end
*}
ML {*
val add_perm = @{term "op + :: (perm \<Rightarrow> perm \<Rightarrow> perm)"}
val pi1 = Free ("pi1", @{typ perm});
val pi2 = Free ("pi2", @{typ perm});
val perm_append_thms =
List.take (map Drule.export_without_context (split_conj_thm
(Goal.prove_global @{theory} [] []
(HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map (fn ((s, T), x) =>
let
val perm = Const (s, @{typ perm} --> T --> T);
val lhs = perm $ (add_perm $ pi1 $ pi2) $ Free (x, T)
val rhs = perm $ pi1 $ (perm $ pi2 $ Free (x, T))
in HOLogic.mk_eq (lhs, rhs)
end)
(perm_names ~~
map body_type perm_types ~~ perm_indnames))))
(fn _ => EVERY [indtac induct perm_indnames 1,
ALLGOALS (asm_full_simp_tac @{simpset})]))),
length new_type_names)
*}
instance
apply(tactic {*
(Class.intro_classes_tac []) THEN
(ALLGOALS (simp_tac (@{simpset} addsimps (perm_empty_thms @ perm_append_thms)))) *})
done
end