copied all work to Lambda.thy; had to derive a special version of fcb1 for concrete atom
theory Tutorial5
imports Tutorial4
begin
section {* Type-Preservation and Progress Lemma*}
text {*
The point of this tutorial is to prove the
type-preservation and progress lemma. Since
we now know that \<Down>, \<longrightarrow>cbv* and the machine
correspond to each other, we only need to
prove this property for one of them. We chose
\<longrightarrow>cbv.
First we need to establish two elimination
properties and two auxiliary lemmas about contexts.
*}
lemma valid_elim:
assumes a: "valid ((x, T) # \<Gamma>)"
shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
using a by (cases) (auto)
lemma valid_insert:
assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
shows "valid (\<Delta> @ \<Gamma>)"
using a
by (induct \<Delta>)
(auto simp add: fresh_append fresh_Cons dest!: valid_elim)
lemma fresh_list:
shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
lemma context_unique:
assumes a1: "valid \<Gamma>"
and a2: "(x, T) \<in> set \<Gamma>"
and a3: "(x, U) \<in> set \<Gamma>"
shows "T = U"
using a1 a2 a3
by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
section {* EXERCISE 16 *}
text {*
Next we want to show the type substitution lemma. Unfortunately,
we have to prove a slightly more general version of it, where
the variable being substituted occurs somewhere inside the
context.
*}
lemma type_substitution_aux:
assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
and b: "\<Gamma> \<turnstile> e' : T'"
shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T"
using a b
proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
case (t_Var y T x e' \<Delta>)
have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
have a3: "\<Gamma> \<turnstile> e' : T'" by fact
from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
{ assume eq: "x = y"
have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" sorry
}
moreover
{ assume ineq: "x \<noteq> y"
from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
}
ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
next
case (t_Lam y T1 t T2 x e' \<Delta>)
have a1: "atom y \<sharp> e'" by fact
have a2: "atom y \<sharp> \<Delta> @ [(x, T')] @ \<Gamma>" by fact
have a3: "\<Gamma> \<turnstile> e' : T'" by fact
have ih: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> ((y, T1) # \<Delta>) @ \<Gamma> \<turnstile> t [x ::= e'] : T2"
using t_Lam(6)[of "(y, T1) # \<Delta>"] by auto
show "\<Delta> @ \<Gamma> \<turnstile> (Lam [y]. t)[x ::= e'] : T1 \<rightarrow> T2" sorry
next
case (t_App t1 T1 T2 t2 x e' \<Delta>)
have ih1: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t1 [x ::= e'] : T1 \<rightarrow> T2" using t_App(2) by auto
have ih2: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t2 [x ::= e'] : T1" using t_App(4) by auto
have a: "\<Gamma> \<turnstile> e' : T'" by fact
show "\<Delta> @ \<Gamma> \<turnstile> App t1 t2 [x ::= e'] : T2" sorry
qed
text {*
From this we can derive the usual version of the substitution
lemma.
*}
corollary type_substitution:
assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
and b: "\<Gamma> \<turnstile> e' : T'"
shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
using a b type_substitution_aux[of "[]"]
by auto
section {* Type Preservation *}
text {*
Finally we are in a position to establish the type preservation
property. We just need the following two inversion rules for
particualr typing instances.
*}
lemma t_App_elim:
assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
using a
by (cases) (auto simp add: lam.eq_iff lam.distinct)
text {* we have not yet generated strong elimination rules *}
lemma t_Lam_elim:
assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T"
and fc: "atom x \<sharp> \<Gamma>"
obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"
using ty fc
apply(cases)
apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
apply(auto simp add: Abs1_eq_iff)
apply(rotate_tac 3)
apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)
apply(perm_simp)
apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)
done
section {* EXERCISE 17 *}
text {*
Fill in the gaps in the t_Lam case. You will need
the type substitution lemma proved above.
*}
theorem cbv_type_preservation:
assumes a: "t \<longrightarrow>cbv t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
using a b
proof (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
case (cbv1 v x t \<Gamma> T)
have fc: "atom x \<sharp> \<Gamma>" by fact
have "\<Gamma> \<turnstile> App (Lam [x]. t) v : T" by fact
then obtain T' where
*: "\<Gamma> \<turnstile> Lam [x]. t : T' \<rightarrow> T" and
**: "\<Gamma> \<turnstile> v : T'" by (rule t_App_elim)
have "(x, T') # \<Gamma> \<turnstile> t : T" using * fc by (rule t_Lam_elim) (simp add: ty.eq_iff)
show "\<Gamma> \<turnstile> t [x ::= v] : T " sorry
qed (auto elim!: t_App_elim)
text {*
We can easily extend this to sequences of cbv* reductions.
*}
corollary cbvs_type_preservation:
assumes a: "t \<longrightarrow>cbv* t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
using a b
by (induct) (auto intro: cbv_type_preservation)
text {*
The type-preservation property for the machine and
evaluation relation.
*}
theorem machine_type_preservation:
assumes a: "<t, []> \<mapsto>* <t', []>"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
proof -
have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp
then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp
qed
theorem eval_type_preservation:
assumes a: "t \<Down> t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
proof -
have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp
then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp
qed
text {* The Progress Property *}
lemma canonical_tArr:
assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
and b: "val t"
obtains x t' where "t = Lam [x].t'"
using b a by (induct) (auto)
theorem progress:
assumes a: "[] \<turnstile> t : T"
shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
using a
by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
(auto elim: canonical_tArr simp add: val.simps)
text {*
Done! Congratulations!
*}
end