copied all work to Lambda.thy; had to derive a special version of fcb1 for concrete atom
(* Title: nominal_thmdecls.ML
Author: Christian Urban
Infrastructure for the lemma collection "eqvts".
Provides the attributes [eqvt] and [eqvt_raw], and the theorem
lists eqvts and eqvts_raw. The first attribute will store the
theorem in the eqvts list and also in the eqvts_raw list. For
the latter the theorem is expected to be of the form
p o (c x1 x2 ...) = c (p o x1) (p o x2) ... (1)
or
c x1 x2 ... ==> c (p o x1) (p o x2) ... (2)
and it is stored in the form
p o c == c
The [eqvt_raw] attribute just adds the theorem to eqvts_raw.
TODO: In case of the form in (2) one should also
add the equational form to eqvts
*)
signature NOMINAL_THMDECLS =
sig
val eqvt_add: attribute
val eqvt_del: attribute
val eqvt_raw_add: attribute
val eqvt_raw_del: attribute
val setup: theory -> theory
val get_eqvts_thms: Proof.context -> thm list
val get_eqvts_raw_thms: Proof.context -> thm list
val eqvt_transform: Proof.context -> thm -> thm
val is_eqvt: Proof.context -> term -> bool
end;
structure Nominal_ThmDecls: NOMINAL_THMDECLS =
struct
structure EqvtData = Generic_Data
( type T = thm Item_Net.T;
val empty = Thm.full_rules;
val extend = I;
val merge = Item_Net.merge);
structure EqvtRawData = Generic_Data
( type T = thm Termtab.table;
val empty = Termtab.empty;
val extend = I;
val merge = Termtab.merge (K true));
val eqvts = Item_Net.content o EqvtData.get;
val eqvts_raw = map snd o Termtab.dest o EqvtRawData.get;
val get_eqvts_thms = eqvts o Context.Proof;
val get_eqvts_raw_thms = eqvts_raw o Context.Proof;
val add_thm = EqvtData.map o Item_Net.update;
val del_thm = EqvtData.map o Item_Net.remove;
fun add_raw_thm thm =
case prop_of thm of
Const ("==", _) $ _ $ (c as Const _) => EqvtRawData.map (Termtab.update (c, thm))
| _ => raise THM ("Theorem must be a meta-equality where the right-hand side is a constant.", 0, [thm])
fun del_raw_thm thm =
case prop_of thm of
Const ("==", _) $ _ $ (c as Const _) => EqvtRawData.map (Termtab.delete c)
| _ => raise THM ("Theorem must be a meta-equality where the right-hand side is a constant.", 0, [thm])
fun is_eqvt ctxt trm =
case trm of
(c as Const _) => Termtab.defined (EqvtRawData.get (Context.Proof ctxt)) c
| _ => false (* raise TERM ("Term must be a constant.", [trm]) *)
(** transformation of eqvt lemmas **)
fun get_perms trm =
case trm of
Const (@{const_name permute}, _) $ _ $ (Bound _) =>
raise TERM ("get_perms called on bound", [trm])
| Const (@{const_name permute}, _) $ p $ _ => [p]
| t $ u => get_perms t @ get_perms u
| Abs (_, _, t) => get_perms t
| _ => []
fun add_perm p trm =
let
fun aux trm =
case trm of
Bound _ => trm
| Const _ => trm
| t $ u => aux t $ aux u
| Abs (x, ty, t) => Abs (x, ty, aux t)
| _ => mk_perm p trm
in
strip_comb trm
||> map aux
|> list_comb
end
(* tests whether there is a disagreement between the permutations,
and that there is at least one permutation *)
fun is_bad_list [] = true
| is_bad_list [_] = false
| is_bad_list (p::q::ps) = if p = q then is_bad_list (q::ps) else true
(* transforms equations into the "p o c == c"-form
from p o (c x1 ...xn) = c (p o x1) ... (p o xn) *)
fun eqvt_transform_eq_tac thm =
let
val ss_thms = @{thms permute_minus_cancel permute_prod.simps split_paired_all}
in
REPEAT o FIRST'
[CHANGED o simp_tac (HOL_basic_ss addsimps ss_thms),
rtac (thm RS @{thm trans}),
rtac @{thm trans[OF permute_fun_def]} THEN' rtac @{thm ext}]
end
fun eqvt_transform_eq ctxt thm =
let
val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of thm))
handle TERM _ => error "Equivariance lemma must be an equality."
val (p, t) = dest_perm lhs
handle TERM _ => error "Equivariance lemma is not of the form p \<bullet> c... = c..."
val ps = get_perms rhs handle TERM _ => []
val (c, c') = (head_of t, head_of rhs)
val msg = "Equivariance lemma is not of the right form "
in
if c <> c'
then error (msg ^ "(constants do not agree).")
else if is_bad_list (p :: ps)
then error (msg ^ "(permutations do not agree).")
else if not (rhs aconv (add_perm p t))
then error (msg ^ "(arguments do not agree).")
else if is_Const t
then safe_mk_equiv thm
else
let
val goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (mk_perm p c, c))
val ([goal', p'], ctxt') = Variable.import_terms false [goal, p] ctxt
in
Goal.prove ctxt [] [] goal' (fn _ => eqvt_transform_eq_tac thm 1)
|> singleton (ProofContext.export ctxt' ctxt)
|> safe_mk_equiv
|> zero_var_indexes
end
end
(* transforms equations into the "p o c == c"-form
from R x1 ...xn ==> R (p o x1) ... (p o xn) *)
fun eqvt_transform_imp_tac ctxt p p' thm =
let
val thy = ProofContext.theory_of ctxt
val cp = Thm.cterm_of thy p
val cp' = Thm.cterm_of thy (mk_minus p')
val thm' = Drule.cterm_instantiate [(cp, cp')] thm
val simp = HOL_basic_ss addsimps @{thms permute_minus_cancel(2)}
in
EVERY' [rtac @{thm iffI}, dtac @{thm permute_boolE}, rtac thm, atac,
rtac @{thm permute_boolI}, dtac thm', full_simp_tac simp]
end
fun eqvt_transform_imp ctxt thm =
let
val (prem, concl) = pairself HOLogic.dest_Trueprop (Logic.dest_implies (prop_of thm))
val (c, c') = (head_of prem, head_of concl)
val ps = get_perms concl handle TERM _ => []
val p = try hd ps
val msg = "Equivariance lemma is not of the right form "
in
if c <> c'
then error (msg ^ "(constants do not agree).")
else if is_bad_list ps
then error (msg ^ "(permutations do not agree).")
else if not (concl aconv (add_perm (the p) prem))
then error (msg ^ "(arguments do not agree).")
else
let
val prem' = mk_perm (the p) prem
val goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (prem', concl))
val ([goal', p'], ctxt') = Variable.import_terms false [goal, the p] ctxt
in
Goal.prove ctxt' [] [] goal'
(fn _ => eqvt_transform_imp_tac ctxt' (the p) p' thm 1)
|> singleton (ProofContext.export ctxt' ctxt)
end
end
fun eqvt_transform ctxt thm =
case (prop_of thm) of
@{const "Trueprop"} $ (Const (@{const_name "HOL.eq"}, _) $
(Const (@{const_name "permute"}, _) $ _ $ _) $ _) =>
eqvt_transform_eq ctxt thm
| @{const "==>"} $ (@{const "Trueprop"} $ _) $ (@{const "Trueprop"} $ _) =>
eqvt_transform_imp ctxt thm |> eqvt_transform_eq ctxt
| _ => raise error "Only _ = _ and _ ==> _ cases are implemented."
(** attributes **)
val eqvt_add = Thm.declaration_attribute
(fn thm => fn context =>
let
val thm' = eqvt_transform (Context.proof_of context) thm
in
context |> add_thm thm |> add_raw_thm thm'
end)
val eqvt_del = Thm.declaration_attribute
(fn thm => fn context =>
let
val thm' = eqvt_transform (Context.proof_of context) thm
in
context |> del_thm thm |> del_raw_thm thm'
end)
val eqvt_raw_add = Thm.declaration_attribute add_raw_thm;
val eqvt_raw_del = Thm.declaration_attribute del_raw_thm;
(** setup function **)
val setup =
Attrib.setup @{binding "eqvt"} (Attrib.add_del eqvt_add eqvt_del)
(cat_lines ["Declaration of equivariance lemmas - they will automtically be",
"brought into the form p o c == c"]) #>
Attrib.setup @{binding "eqvt_raw"} (Attrib.add_del eqvt_raw_add eqvt_raw_del)
(cat_lines ["Declaration of equivariance lemmas - no",
"transformation is performed"]) #>
Global_Theory.add_thms_dynamic (@{binding "eqvts"}, eqvts) #>
Global_Theory.add_thms_dynamic (@{binding "eqvts_raw"}, eqvts_raw);
end;