Nominal/nominal_dt_rawfuns.ML
author Christian Urban <urbanc@in.tum.de>
Tue, 28 Jun 2011 00:30:30 +0100
changeset 2912 3c363a5070a5
parent 2888 eda5aeb056a6
child 2957 01ff621599bc
permissions -rw-r--r--
copied all work to Lambda.thy; had to derive a special version of fcb1 for concrete atom

(*  Title:      nominal_dt_rawfuns.ML
    Author:     Cezary Kaliszyk
    Author:     Christian Urban

  Definitions of the raw fv, fv_bn and permute functions.
*)

signature NOMINAL_DT_RAWFUNS =
sig
  (* info of raw datatypes *)
  type dt_info = (string list * binding * mixfix * ((binding * typ list * mixfix) list)) list

  (* info of raw binding functions *)
  type bn_info = term * int * (int * term option) list list

  (* binding modes and binding clauses *)
  datatype bmode = Lst | Res | Set
  datatype bclause = BC of bmode * (term option * int) list * int list

  val get_all_binders: bclause list -> (term option * int) list
  val is_recursive_binder: bclause -> bool

  val define_raw_bns: string list -> dt_info -> (binding * typ option * mixfix) list ->
    (Attrib.binding * term) list -> thm list -> thm list -> local_theory ->
    (term list * thm list * bn_info list * thm list * local_theory) 

  val define_raw_fvs: string list -> typ list -> cns_info list -> bn_info list -> bclause list list list -> 
    thm list -> thm list -> Proof.context -> term list * term list * thm list * thm list * local_theory

  val define_raw_bn_perms: typ list -> bn_info list -> cns_info list -> thm list -> thm list -> 
    local_theory -> (term list * thm list * local_theory)
 
  val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list

  val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm -> 
    local_theory -> (term list * thm list * thm list) * local_theory
end


structure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =
struct

open Nominal_Permeq

(* string list      - type variables of a datatype
   binding          - name of the datatype
   mixfix           - its mixfix
   (binding * typ list * mixfix) list  - datatype constructors of the type
*)  
type dt_info = (string list * binding * mixfix * ((binding * typ list * mixfix) list)) list


(* term              - is constant of the bn-function 
   int               - is datatype number over which the bn-function is defined
   int * term option - is number of the corresponding argument with possibly
                       recursive call with bn-function term 
*)  
type bn_info = term * int * (int * term option) list list


datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list

fun get_all_binders bclauses = 
  bclauses
  |> map (fn (BC (_, binders, _)) => binders) 
  |> flat
  |> remove_dups (op =)

fun is_recursive_binder (BC (_, binders, bodies)) =
  case (inter (op =) (map snd binders) bodies) of
    nil => false
  | _ => true
  

fun lookup xs x = the (AList.lookup (op=) xs x)


(** functions that define the raw binding functions **)

(* strip_bn_fun takes a rhs of a bn function: this can only contain unions or
   appends of elements; in case of recursive calls it returns also the applied
   bn function *)
fun strip_bn_fun lthy args t =
let 
  fun aux t =
    case t of
      Const (@{const_name sup}, _) $ l $ r => aux l @ aux r
    | Const (@{const_name append}, _) $ l $ r => aux l @ aux r
    | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ (x as Var _)) $ y =>
        (find_index (equal x) args, NONE) :: aux y
    | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ (x as Var _)) $ y =>
        (find_index (equal x) args, NONE) :: aux y
    | Const (@{const_name bot}, _) => []
    | Const (@{const_name Nil}, _) => []
    | (f as Const _) $ (x as Var _) => [(find_index (equal x) args, SOME f)]
    | _ => error ("Unsupported binding function: " ^ (Syntax.string_of_term lthy t))
in
  aux t
end  

(** definition of the raw binding functions **)

fun prep_bn_info lthy dt_names dts bn_funs eqs = 
let
  fun process_eq eq = 
  let
    val (lhs, rhs) = eq
      |> HOLogic.dest_Trueprop
      |> HOLogic.dest_eq
    val (bn_fun, [cnstr]) = strip_comb lhs
    val (_, ty) = dest_Const bn_fun
    val (ty_name, _) = dest_Type (domain_type ty)
    val dt_index = find_index (fn x => x = ty_name) dt_names
    val (cnstr_head, cnstr_args) = strip_comb cnstr    
    val cnstr_name = Long_Name.base_name (fst (dest_Const cnstr_head))
    val rhs_elements = strip_bn_fun lthy cnstr_args rhs
  in
    ((bn_fun, dt_index), (cnstr_name, rhs_elements))
  end

  (* order according to constructor names *)
  fun cntrs_order ((bn, dt_index), data) = 
  let
    val dt = nth dts dt_index                      
    val cts = (fn (_, _, _, x) => x) dt     
    val ct_names = map (Binding.name_of o (fn (x, _, _) => x)) cts  
  in
    (bn, (bn, dt_index, order (op=) ct_names data))
  end 
in
  eqs
  |> map process_eq 
  |> AList.group (op=)      (* eqs grouped according to bn_functions *)
  |> map cntrs_order        (* inner data ordered according to constructors *)
  |> order (op=) bn_funs    (* ordered according to bn_functions *)
end

fun define_raw_bns dt_names dts raw_bn_funs raw_bn_eqs constr_thms size_thms lthy =
  if null raw_bn_funs 
  then ([], [], [], [], lthy)
  else 
    let
      val (_, lthy1) = Function.add_function raw_bn_funs raw_bn_eqs
        Function_Common.default_config (pat_completeness_simp constr_thms) lthy

      val (info, lthy2) = prove_termination_fun size_thms (Local_Theory.restore lthy1)
      val {fs, simps, inducts, ...} = info

      val raw_bn_induct = (the inducts)
      val raw_bn_eqs = the simps

      val raw_bn_info = 
        prep_bn_info lthy dt_names dts fs (map prop_of raw_bn_eqs)
    in
      (fs, raw_bn_eqs, raw_bn_info, raw_bn_induct, lthy2)
    end



(** functions that construct the equations for fv and fv_bn **)

fun mk_fv_rhs lthy fv_map fv_bn_map args (BC (bmode, binders, bodies)) =
  let
    fun mk_fv_body fv_map args i = 
      let
        val arg = nth args i
        val ty = fastype_of arg
      in
        case AList.lookup (op=) fv_map ty of
          NONE => mk_supp arg
        | SOME fv => fv $ arg
      end  

  fun mk_fv_binder lthy fv_bn_map args binders = 
    let
      fun bind_set lthy args (NONE, i) = (setify lthy (nth args i), @{term "{}::atom set"})
        | bind_set _ args (SOME bn, i) = (bn $ (nth args i), 
            if  member (op=) bodies i then @{term "{}::atom set"}  
            else lookup fv_bn_map bn $ (nth args i))
      fun bind_lst lthy args (NONE, i) = (listify lthy (nth args i), @{term "[]::atom list"})
        | bind_lst _ args (SOME bn, i) = (bn $ (nth args i),
            if  member (op=) bodies i then @{term "[]::atom list"}  
            else lookup fv_bn_map bn $ (nth args i)) 
  
      val (combine_fn, bind_fn) =
        case bmode of
          Lst => (fold_append, bind_lst) 
        | Set => (fold_union, bind_set)
        | Res => (fold_union, bind_set)
    in
      binders
      |> map (bind_fn lthy args)
      |> split_list
      |> pairself combine_fn
    end  

    val t1 = map (mk_fv_body fv_map args) bodies
    val (t2, t3) = mk_fv_binder lthy fv_bn_map args binders
  in 
    mk_union (mk_diff (fold_union t1, to_set t2), to_set t3)
  end

(* in case of fv_bn we have to treat the case special, where an
   "empty" binding clause is given *)
fun mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause =
  let
    fun mk_fv_bn_body i = 
    let
      val arg = nth args i
      val ty = fastype_of arg
    in
      case AList.lookup (op=) bn_args i of
        NONE => (case (AList.lookup (op=) fv_map ty) of
                   NONE => mk_supp arg
                 | SOME fv => fv $ arg)
      | SOME (NONE) => @{term "{}::atom set"}
      | SOME (SOME bn) => lookup fv_bn_map bn $ arg
    end  
  in
    case bclause of
      BC (_, [], bodies) => fold_union (map mk_fv_bn_body bodies)
    | _ => mk_fv_rhs lthy fv_map fv_bn_map args bclause
  end

fun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys, _) bclauses = 
  let
    val arg_names = Datatype_Prop.make_tnames arg_tys
    val args = map Free (arg_names ~~ arg_tys)
    val fv = lookup fv_map ty
    val lhs = fv $ list_comb (constr, args)
    val rhs_trms = map (mk_fv_rhs lthy fv_map fv_bn_map args) bclauses
    val rhs = fold_union rhs_trms
  in
    HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
  end

fun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys, _)) bclauses =
  let
    val arg_names = Datatype_Prop.make_tnames arg_tys
    val args = map Free (arg_names ~~ arg_tys)
    val fv_bn = lookup fv_bn_map bn_trm
    val lhs = fv_bn $ list_comb (constr, args)
    val rhs_trms = map (mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses
    val rhs = fold_union rhs_trms
  in
    HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
  end

fun mk_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = 
  let
    val nth_constrs_info = nth constrs_info bn_n
    val nth_bclausess = nth bclausesss bn_n
  in
    map2 (mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
  end

fun define_raw_fvs raw_full_ty_names raw_tys cns_info bn_info bclausesss constr_thms size_simps lthy =
  let
    val fv_names = map (prefix "fv_" o Long_Name.base_name) raw_full_ty_names
    val fv_tys = map (fn ty => ty --> @{typ "atom set"}) raw_tys
    val fv_frees = map Free (fv_names ~~ fv_tys);
    val fv_map = raw_tys ~~ fv_frees

    val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
    val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
    val fv_bn_names = map (prefix "fv_") bn_names
    val fv_bn_arg_tys = map (nth raw_tys) bn_tys
    val fv_bn_tys = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys
    val fv_bn_frees = map Free (fv_bn_names ~~ fv_bn_tys)
    val fv_bn_map = bns ~~ fv_bn_frees

    val fv_eqs = map2 (map2 (mk_fv_eq lthy fv_map fv_bn_map)) cns_info bclausesss 
    val fv_bn_eqs = map (mk_fv_bn_eqs lthy fv_map fv_bn_map cns_info bclausesss) bn_info
  
    val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names)
    val all_fun_eqs = map (pair Attrib.empty_binding) (flat fv_eqs @ flat fv_bn_eqs)

    val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
      Function_Common.default_config (pat_completeness_simp constr_thms) lthy

    val (info, lthy'') = prove_termination_fun size_simps (Local_Theory.restore lthy')
 
    val {fs, simps, inducts, ...} = info; 

    val morphism = ProofContext.export_morphism lthy'' lthy
    val simps_exp = map (Morphism.thm morphism) (the simps)
    val inducts_exp = map (Morphism.thm morphism) (the inducts)
    
    val (fvs', fv_bns') = chop (length fv_frees) fs

    (* grafting the types so that they coincide with the input into the function package *)
    val fvs'' = map2 (fn t => fn ty => Const (fst (dest_Const t), ty) ) fvs' fv_tys
    val fv_bns'' = map2 (fn t => fn ty => Const (fst (dest_Const t), ty) ) fv_bns' fv_bn_tys
  in
    (fvs'', fv_bns'', simps_exp, inducts_exp, lthy'')
  end


(** definition of raw permute_bn functions **)

fun mk_perm_bn_eq_rhs p perm_bn_map bn_args (i, arg) = 
  case AList.lookup (op=) bn_args i of
    NONE => arg
  | SOME (NONE) => mk_perm p arg
  | SOME (SOME bn) => (lookup perm_bn_map bn) $ p $ arg   


fun mk_perm_bn_eq lthy bn_trm perm_bn_map bn_args (constr, _, arg_tys, _) =
  let
    val p = Free ("p", @{typ perm})
    val arg_names = Datatype_Prop.make_tnames arg_tys
    val args = map Free (arg_names ~~ arg_tys)
    val perm_bn = lookup perm_bn_map bn_trm
    val lhs = perm_bn $ p $ list_comb (constr, args)
    val rhs = list_comb (constr, map_index (mk_perm_bn_eq_rhs p perm_bn_map bn_args) args)
  in
    HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
  end

fun mk_perm_bn_eqs lthy perm_bn_map cns_info (bn_trm, bn_n, bn_argss) = 
  let
    val nth_cns_info = nth cns_info bn_n
  in
    map2 (mk_perm_bn_eq lthy bn_trm perm_bn_map) bn_argss nth_cns_info
  end

fun define_raw_bn_perms raw_tys bn_info cns_info cns_thms size_thms lthy =
  if null bn_info
  then ([], [], lthy)
  else
    let
      val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
      val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
      val perm_bn_names = map (prefix "permute_") bn_names
      val perm_bn_arg_tys = map (nth raw_tys) bn_tys
      val perm_bn_tys = map (fn ty => @{typ "perm"} --> ty --> ty) perm_bn_arg_tys
      val perm_bn_frees = map Free (perm_bn_names ~~ perm_bn_tys)
      val perm_bn_map = bns ~~ perm_bn_frees

      val perm_bn_eqs = map (mk_perm_bn_eqs lthy perm_bn_map cns_info) bn_info

      val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) perm_bn_names
      val all_fun_eqs = map (pair Attrib.empty_binding) (flat perm_bn_eqs)

      val prod_simps = @{thms prod.inject HOL.simp_thms}

      val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
        Function_Common.default_config (pat_completeness_simp (prod_simps @ cns_thms)) lthy
    
      val (info, lthy'') = prove_termination_fun size_thms (Local_Theory.restore lthy')

      val {fs, simps, ...} = info;

      val morphism = ProofContext.export_morphism lthy'' lthy
      val simps_exp = map (Morphism.thm morphism) (the simps)
    in
      (fs, simps_exp, lthy'')
    end


(** equivarance proofs **)

val eqvt_apply_sym = @{thm eqvt_apply[symmetric]}

fun subproof_tac const_names simps = 
  SUBPROOF (fn {prems, context, ...} => 
    HEADGOAL 
      (simp_tac (HOL_basic_ss addsimps simps)
       THEN' eqvt_tac context (eqvt_relaxed_config addexcls const_names)
       THEN' simp_tac (HOL_basic_ss addsimps (prems @ [eqvt_apply_sym]))))

fun prove_eqvt_tac insts ind_thms const_names simps ctxt = 
  HEADGOAL
    (Object_Logic.full_atomize_tac
     THEN' (DETERM o (InductTacs.induct_rules_tac ctxt insts ind_thms))  
     THEN_ALL_NEW  subproof_tac const_names simps ctxt)

fun mk_eqvt_goal pi const arg =
  let
    val lhs = mk_perm pi (const $ arg)
    val rhs = const $ (mk_perm pi arg)  
  in
    HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
  end


fun raw_prove_eqvt consts ind_thms simps ctxt =
  if null consts then []
  else
    let 
      val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
      val p = Free (p, @{typ perm})
      val arg_tys = 
        consts
        |> map fastype_of
        |> map domain_type 
      val (arg_names, ctxt'') = 
        Variable.variant_fixes (Datatype_Prop.make_tnames arg_tys) ctxt'
      val args = map Free (arg_names ~~ arg_tys)
      val goals = map2 (mk_eqvt_goal p) consts args
      val insts = map (single o SOME) arg_names
      val const_names = map (fst o dest_Const) consts      
    in
      Goal.prove_multi ctxt'' [] [] goals (fn {context, ...} => 
        prove_eqvt_tac insts ind_thms const_names simps context)
      |> ProofContext.export ctxt'' ctxt
    end



(*** raw permutation functions ***)

(** proves the two pt-type class properties **)

fun prove_permute_zero induct perm_defs perm_fns lthy =
  let
    val perm_types = map (body_type o fastype_of) perm_fns
    val perm_indnames = Datatype_Prop.make_tnames perm_types
  
    fun single_goal ((perm_fn, T), x) =
      HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))

    val goals =
      HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
        (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))

    val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)

    val tac = (Datatype_Aux.indtac induct perm_indnames 
               THEN_ALL_NEW asm_simp_tac simps) 1
  in
    Goal.prove lthy perm_indnames [] goals (K tac)
    |> Datatype_Aux.split_conj_thm
  end


fun prove_permute_plus induct perm_defs perm_fns lthy =
  let
    val p = Free ("p", @{typ perm})
    val q = Free ("q", @{typ perm})
    val perm_types = map (body_type o fastype_of) perm_fns
    val perm_indnames = Datatype_Prop.make_tnames perm_types
  
    fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq 
      (perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))

    val goals =
      HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
        (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))

    val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)

    val tac = (Datatype_Aux.indtac induct perm_indnames
               THEN_ALL_NEW asm_simp_tac simps) 1
  in
    Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
    |> Datatype_Aux.split_conj_thm 
  end


fun mk_perm_eq ty_perm_assoc cnstr = 
  let
    fun lookup_perm p (ty, arg) = 
      case (AList.lookup (op=) ty_perm_assoc ty) of
        SOME perm => perm $ p $ arg
      | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg

    val p = Free ("p", @{typ perm})
    val (arg_tys, ty) =
      fastype_of cnstr
      |> strip_type

    val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
    val args = map Free (arg_names ~~ arg_tys)

    val lhs = lookup_perm p (ty, list_comb (cnstr, args))
    val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
  
    val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))  
  in
    (Attrib.empty_binding, eq)
  end


fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy =
  let
    val perm_fn_names = full_ty_names
      |> map Long_Name.base_name
      |> map (prefix "permute_")

    val perm_fn_types = map perm_ty tys
    val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
    val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names

    val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs

    fun tac _ (_, _, simps) =
      Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
  
    fun morphism phi (fvs, dfs, simps) =
      (map (Morphism.term phi) fvs, 
       map (Morphism.thm phi) dfs, 
       map (Morphism.thm phi) simps);

    val ((perm_funs, perm_eq_thms), lthy') =
      lthy
      |> Local_Theory.exit_global
      |> Class.instantiation (full_ty_names, tvs, @{sort pt}) 
      |> Primrec.add_primrec perm_fn_binds perm_eqs
    
    val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy'
    val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy'  
  in
    lthy'
    |> Class.prove_instantiation_exit_result morphism tac 
         (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
    ||> Named_Target.theory_init
  end


end (* structure *)