copied all work to Lambda.thy; had to derive a special version of fcb1 for concrete atom
(* Title: nominal_atoms/ML
Authors: Brian Huffman, Christian Urban
Command for defining concrete atom types.
At the moment, only single-sorted atom types
are supported.
*)
signature ATOM_DECL =
sig
val add_atom_decl: (binding * (binding option)) -> theory -> theory
end;
structure Atom_Decl :> ATOM_DECL =
struct
val simp_attr = Attrib.internal (K Simplifier.simp_add)
fun atom_decl_set (str : string) : term =
let
val a = Free ("a", @{typ atom});
val s = Const (@{const_name "Sort"}, @{typ "string => atom_sort list => atom_sort"})
$ HOLogic.mk_string str $ HOLogic.nil_const @{typ "atom_sort"};
in
HOLogic.mk_Collect ("a", @{typ atom}, HOLogic.mk_eq (mk_sort_of a, s))
end
fun add_atom_decl (name : binding, arg : binding option) (thy : theory) =
let
val _ = Theory.requires thy "Nominal2_Base" "nominal logic";
val str = Sign.full_name thy name;
(* typedef *)
val set = atom_decl_set str;
val tac = rtac @{thm exists_eq_simple_sort} 1;
val ((full_tname, info as ({Rep_name, Abs_name, ...}, {type_definition, ...})), thy) =
Typedef.add_typedef_global false NONE (name, [], NoSyn) set NONE tac thy;
(* definition of atom and permute *)
val newT = #abs_type (fst info);
val RepC = Const (Rep_name, newT --> @{typ atom});
val AbsC = Const (Abs_name, @{typ atom} --> newT);
val a = Free ("a", newT);
val p = Free ("p", @{typ perm});
val atom_eqn =
HOLogic.mk_Trueprop (HOLogic.mk_eq (mk_atom a, RepC $ a));
val permute_eqn =
HOLogic.mk_Trueprop (HOLogic.mk_eq
(mk_perm p a, AbsC $ (mk_perm p (RepC $ a))));
val atom_def_name =
Binding.prefix_name "atom_" (Binding.suffix_name "_def" name);
val sort_thm_name =
Binding.prefix_name "atom_" (Binding.suffix_name "_sort" name);
val permute_def_name =
Binding.prefix_name "permute_" (Binding.suffix_name "_def" name);
(* at class instance *)
val lthy =
Class.instantiation ([full_tname], [], @{sort at}) thy;
val ((_, (_, permute_ldef)), lthy) =
Specification.definition (NONE, ((permute_def_name, []), permute_eqn)) lthy;
val ((_, (_, atom_ldef)), lthy) =
Specification.definition (NONE, ((atom_def_name, []), atom_eqn)) lthy;
val ctxt_thy = ProofContext.init_global (ProofContext.theory_of lthy);
val permute_def = singleton (ProofContext.export lthy ctxt_thy) permute_ldef;
val atom_def = singleton (ProofContext.export lthy ctxt_thy) atom_ldef;
val class_thm = @{thm at_class} OF [type_definition, atom_def, permute_def];
val sort_thm = @{thm at_class_sort} OF [type_definition, atom_def]
val thy = lthy
|> snd o (Local_Theory.note ((sort_thm_name, [simp_attr]), [sort_thm]))
|> Class.prove_instantiation_instance (K (rtac class_thm 1))
|> Local_Theory.exit_global;
in
thy
end;
(** outer syntax **)
local structure P = Parse and K = Keyword in
val _ =
Outer_Syntax.command "atom_decl" "declaration of a concrete atom type" K.thy_decl
((P.binding -- Scan.option (Args.parens (P.binding))) >>
(Toplevel.print oo (Toplevel.theory o add_atom_decl)));
end;
end;