A version of hom with quantifiers.
theory LamEx
imports Nominal "../QuotMain" "../QuotList"
begin
atom_decl name
datatype rlam =
rVar "name"
| rApp "rlam" "rlam"
| rLam "name" "rlam"
fun
rfv :: "rlam \<Rightarrow> name set"
where
rfv_var: "rfv (rVar a) = {a}"
| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
| rfv_lam: "rfv (rLam a t) = (rfv t) - {a}"
overloading
perm_rlam \<equiv> "perm :: 'x prm \<Rightarrow> rlam \<Rightarrow> rlam" (unchecked)
begin
fun
perm_rlam
where
"perm_rlam pi (rVar a) = rVar (pi \<bullet> a)"
| "perm_rlam pi (rApp t1 t2) = rApp (perm_rlam pi t1) (perm_rlam pi t2)"
| "perm_rlam pi (rLam a t) = rLam (pi \<bullet> a) (perm_rlam pi t)"
end
declare perm_rlam.simps[eqvt]
instance rlam::pt_name
apply(default)
apply(induct_tac [!] x rule: rlam.induct)
apply(simp_all add: pt_name2 pt_name3)
done
instance rlam::fs_name
apply(default)
apply(induct_tac [!] x rule: rlam.induct)
apply(simp add: supp_def)
apply(fold supp_def)
apply(simp add: supp_atm)
apply(simp add: supp_def Collect_imp_eq Collect_neg_eq)
apply(simp add: supp_def)
apply(simp add: supp_def Collect_imp_eq Collect_neg_eq[symmetric])
apply(fold supp_def)
apply(simp add: supp_atm)
done
declare set_diff_eqvt[eqvt]
lemma rfv_eqvt[eqvt]:
fixes pi::"name prm"
shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
apply(induct t)
apply(simp_all)
apply(simp add: perm_set_eq)
apply(simp add: union_eqvt)
apply(simp add: set_diff_eqvt)
apply(simp add: perm_set_eq)
done
inductive
alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
where
a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
| a3: "\<exists>pi::name prm. (rfv t - {a} = rfv s - {b} \<and> (rfv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s \<and> (pi \<bullet> a) = b)
\<Longrightarrow> rLam a t \<approx> rLam b s"
(* should be automatic with new version of eqvt-machinery *)
lemma alpha_eqvt:
fixes pi::"name prm"
shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
apply(induct rule: alpha.induct)
apply(simp add: a1)
apply(simp add: a2)
apply(simp)
apply(rule a3)
apply(erule conjE)
apply(erule exE)
apply(erule conjE)
apply(rule_tac x="pi \<bullet> pia" in exI)
apply(rule conjI)
apply(rule_tac pi1="rev pi" in perm_bij[THEN iffD1])
apply(perm_simp add: eqvts)
apply(rule conjI)
apply(rule_tac pi1="rev pi" in pt_fresh_star_bij(1)[OF pt_name_inst at_name_inst, THEN iffD1])
apply(perm_simp add: eqvts)
apply(rule conjI)
apply(subst perm_compose[symmetric])
apply(simp)
apply(subst perm_compose[symmetric])
apply(simp)
done
lemma alpha_refl:
shows "t \<approx> t"
apply(induct t rule: rlam.induct)
apply(simp add: a1)
apply(simp add: a2)
apply(rule a3)
apply(rule_tac x="[]" in exI)
apply(simp_all add: fresh_star_def fresh_list_nil)
done
lemma alpha_sym:
shows "t \<approx> s \<Longrightarrow> s \<approx> t"
apply(induct rule: alpha.induct)
apply(simp add: a1)
apply(simp add: a2)
apply(rule a3)
apply(erule exE)
apply(rule_tac x="rev pi" in exI)
apply(simp)
apply(simp add: fresh_star_def fresh_list_rev)
apply(rule conjI)
apply(erule conjE)+
apply(rotate_tac 3)
apply(drule_tac pi="rev pi" in alpha_eqvt)
apply(perm_simp)
apply(rule pt_bij2[OF pt_name_inst at_name_inst])
apply(simp)
done
lemma alpha_trans:
shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
apply(induct arbitrary: t3 rule: alpha.induct)
apply(erule alpha.cases)
apply(simp_all)
apply(simp add: a1)
apply(rotate_tac 4)
apply(erule alpha.cases)
apply(simp_all)
apply(simp add: a2)
apply(rotate_tac 1)
apply(erule alpha.cases)
apply(simp_all)
apply(erule conjE)+
apply(erule exE)+
apply(erule conjE)+
apply(rule a3)
apply(rule_tac x="pia @ pi" in exI)
apply(simp add: fresh_star_def fresh_list_append)
apply(simp add: pt_name2)
apply(drule_tac x="rev pia \<bullet> sa" in spec)
apply(drule mp)
apply(rotate_tac 8)
apply(drule_tac pi="rev pia" in alpha_eqvt)
apply(perm_simp)
apply(rotate_tac 11)
apply(drule_tac pi="pia" in alpha_eqvt)
apply(perm_simp)
done
lemma alpha_equivp:
shows "equivp alpha"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
apply(auto intro: alpha_refl alpha_sym alpha_trans)
done
lemma alpha_rfv:
shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
apply(induct rule: alpha.induct)
apply(simp)
apply(simp)
apply(simp)
done
quotient_type lam = rlam / alpha
by (rule alpha_equivp)
quotient_definition
"Var :: name \<Rightarrow> lam"
as
"rVar"
quotient_definition
"App :: lam \<Rightarrow> lam \<Rightarrow> lam"
as
"rApp"
quotient_definition
"Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
as
"rLam"
quotient_definition
"fv :: lam \<Rightarrow> name set"
as
"rfv"
(* definition of overloaded permutation function *)
(* for the lifted type lam *)
overloading
perm_lam \<equiv> "perm :: 'x prm \<Rightarrow> lam \<Rightarrow> lam" (unchecked)
begin
quotient_definition
"perm_lam :: 'x prm \<Rightarrow> lam \<Rightarrow> lam"
as
"perm::'x prm \<Rightarrow> rlam \<Rightarrow> rlam"
end
lemma perm_rsp[quot_respect]:
"(op = ===> alpha ===> alpha) op \<bullet> op \<bullet>"
apply(auto)
(* this is propably true if some type conditions are imposed ;o) *)
sorry
lemma fresh_rsp:
"(op = ===> alpha ===> op =) fresh fresh"
apply(auto)
(* this is probably only true if some type conditions are imposed *)
sorry
lemma rVar_rsp[quot_respect]:
"(op = ===> alpha) rVar rVar"
by (auto intro: a1)
lemma rApp_rsp[quot_respect]: "(alpha ===> alpha ===> alpha) rApp rApp"
by (auto intro: a2)
lemma rLam_rsp[quot_respect]: "(op = ===> alpha ===> alpha) rLam rLam"
apply(auto)
apply(rule a3)
apply(rule_tac x="[]" in exI)
unfolding fresh_star_def
apply(simp add: fresh_list_nil)
apply(simp add: alpha_rfv)
done
lemma rfv_rsp[quot_respect]:
"(alpha ===> op =) rfv rfv"
apply(simp add: alpha_rfv)
done
section {* lifted theorems *}
lemma lam_induct:
"\<lbrakk>\<And>name. P (Var name);
\<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
\<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk>
\<Longrightarrow> P lam"
by (lifting rlam.induct)
lemma perm_lam [simp]:
fixes pi::"'a prm"
shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
and "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
and "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
apply(lifting perm_rlam.simps)
done
instance lam::pt_name
apply(default)
apply(induct_tac [!] x rule: lam_induct)
apply(simp_all add: pt_name2 pt_name3)
done
lemma fv_lam [simp]:
shows "fv (Var a) = {a}"
and "fv (App t1 t2) = fv t1 \<union> fv t2"
and "fv (Lam a t) = fv t - {a}"
apply(lifting rfv_var rfv_app rfv_lam)
done
lemma a1:
"a = b \<Longrightarrow> Var a = Var b"
by (lifting a1)
lemma a2:
"\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
by (lifting a2)
lemma a3:
"\<lbrakk>\<exists>pi::name prm. (fv t - {a} = fv s - {b} \<and> (fv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) = s \<and> (pi \<bullet> a) = b)\<rbrakk>
\<Longrightarrow> Lam a t = Lam b s"
by (lifting a3)
lemma alpha_cases:
"\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
\<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
\<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s;
\<exists>pi::name prm. fv t - {a} = fv s - {b} \<and> (fv t - {a}) \<sharp>* pi \<and> (pi \<bullet> t) = s \<and> pi \<bullet> a = b\<rbrakk> \<Longrightarrow> P\<rbrakk>
\<Longrightarrow> P"
by (lifting alpha.cases)
lemma alpha_induct:
"\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
\<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
\<And>t a s b.
\<lbrakk>\<exists>pi::name prm. fv t - {a} = fv s - {b} \<and>
(fv t - {a}) \<sharp>* pi \<and> ((pi \<bullet> t) = s \<and> qxb (pi \<bullet> t) s) \<and> pi \<bullet> a = b\<rbrakk> \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
\<Longrightarrow> qxb qx qxa"
by (lifting alpha.induct)
lemma lam_inject [simp]:
shows "(Var a = Var b) = (a = b)"
and "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
apply(lifting rlam.inject(1) rlam.inject(2))
apply(auto)
apply(drule alpha.cases)
apply(simp_all)
apply(simp add: alpha.a1)
apply(drule alpha.cases)
apply(simp_all)
apply(drule alpha.cases)
apply(simp_all)
apply(rule alpha.a2)
apply(simp_all)
done
lemma var_supp1:
shows "(supp (Var a)) = ((supp a)::name set)"
apply(simp add: supp_def)
done
lemma var_supp:
shows "(supp (Var a)) = {a::name}"
using var_supp1
apply(simp add: supp_atm)
done
lemma app_supp:
shows "supp (App t1 t2) = (supp t1) \<union> ((supp t2)::name set)"
apply(simp only: perm_lam supp_def lam_inject)
apply(simp add: Collect_imp_eq Collect_neg_eq)
done
lemma lam_supp:
shows "supp (Lam x t) = ((supp ([x].t))::name set)"
apply(simp add: supp_def)
apply(simp add: abs_perm)
sorry
instance lam::fs_name
apply(default)
apply(induct_tac x rule: lam_induct)
apply(simp add: var_supp)
apply(simp add: app_supp)
apply(simp add: lam_supp abs_supp)
done
lemma fresh_lam:
"(a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> a \<sharp> t)"
apply(simp add: fresh_def)
apply(simp add: lam_supp abs_supp)
apply(auto)
done
lemma lam_induct_strong:
fixes a::"'a::fs_name"
assumes a1: "\<And>name b. P b (Var name)"
and a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
and a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; name \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
shows "P a lam"
proof -
have "\<And>(pi::name prm) a. P a (pi \<bullet> lam)"
proof (induct lam rule: lam_induct)
case (1 name pi)
show "P a (pi \<bullet> Var name)"
apply (simp)
apply (rule a1)
done
next
case (2 lam1 lam2 pi)
have b1: "\<And>(pi::name prm) a. P a (pi \<bullet> lam1)" by fact
have b2: "\<And>(pi::name prm) a. P a (pi \<bullet> lam2)" by fact
show "P a (pi \<bullet> App lam1 lam2)"
apply (simp)
apply (rule a2)
apply (rule b1)
apply (rule b2)
done
next
case (3 name lam pi a)
have b: "\<And>(pi::name prm) a. P a (pi \<bullet> lam)" by fact
obtain c::name where fr: "c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
apply(rule exists_fresh[of "(a, pi\<bullet>name, pi\<bullet>lam)"])
apply(simp_all add: fs_name1)
done
from b fr have p: "P a (Lam c (([(c, pi\<bullet>name)]@pi)\<bullet>lam))"
apply -
apply(rule a3)
apply(blast)
apply(simp)
done
have eq: "[(c, pi\<bullet>name)] \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
apply(rule perm_fresh_fresh)
using fr
apply(simp add: fresh_lam)
apply(simp add: fresh_lam)
done
show "P a (pi \<bullet> Lam name lam)"
apply (simp)
apply(subst eq[symmetric])
using p
apply(simp only: perm_lam pt_name2 swap_simps)
done
qed
then have "P a (([]::name prm) \<bullet> lam)" by blast
then show "P a lam" by simp
qed
lemma var_fresh:
fixes a::"name"
shows "(a \<sharp> (Var b)) = (a \<sharp> b)"
apply(simp add: fresh_def)
apply(simp add: var_supp1)
done
(* lemma hom_reg: *)
lemma rlam_rec_eqvt:
fixes pi::"name prm"
and f1::"name \<Rightarrow> ('a::pt_name)"
shows "(pi\<bullet>rlam_rec f1 f2 f3 t) = rlam_rec (pi\<bullet>f1) (pi\<bullet>f2) (pi\<bullet>f3) (pi\<bullet>t)"
apply(induct t)
apply(simp_all)
apply(simp add: perm_fun_def)
apply(perm_simp)
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
back
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
apply(simp)
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
back
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
apply(simp)
done
lemma rlam_rec_respects:
assumes f1: "f_var \<in> Respects (op= ===> op=)"
and f2: "f_app \<in> Respects (alpha ===> alpha ===> op= ===> op= ===> op=)"
and f3: "f_lam \<in> Respects (op= ===> alpha ===> op= ===> op=)"
shows "rlam_rec f_var f_app f_lam \<in> Respects (alpha ===> op =)"
apply(simp add: mem_def)
apply(simp add: Respects_def)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(erule alpha.induct)
apply(simp)
apply(simp)
using f2
apply(simp add: mem_def)
apply(simp add: Respects_def)
using f3[simplified mem_def Respects_def]
apply(simp)
apply(case_tac "a=b")
apply(clarify)
apply(simp)
(* probably true *)
sorry
lemma hom:
"\<exists>hom\<in>Respects (alpha ===> op =).
((\<forall>x. hom (rVar x) = f_var x) \<and>
(\<forall>l r. hom (rApp l r) = f_app l r (hom l) (hom r)) \<and>
(\<forall>x a. hom (rLam a x) = f_lam (\<lambda>b. ([(a,b)]\<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
apply(rule_tac x="rlam_rec f_var f_app XX" in bexI)
apply(rule conjI)
apply(simp)
apply(rule conjI)
apply(simp)
apply(simp)
sorry
lemma hom_res: "
\<forall>f_var. \<forall>f_app \<in> Respects(alpha ===> alpha ===> op =).
\<forall>f_lam \<in> Respects((op = ===> alpha) ===> op =).
\<exists>hom\<in>Respects (alpha ===> op =).
((\<forall>x. hom (rVar x) = f_var x) \<and>
(\<forall>l r. hom (rApp l r) = f_app l r (hom l) (hom r)) \<and>
(\<forall>x a. hom (rLam a x) = f_lam (\<lambda>b. ([(a,b)]\<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
apply(rule allI)
apply(rule ballI)+
apply(rule_tac x="rlam_rec f_var f_app XX" in bexI)
apply(rule conjI)
apply(simp)
apply(rule conjI)
apply(simp)
apply(simp_all only: in_respects)
sorry
lemma hom':
"\<exists>hom.
((\<forall>x. hom (Var x) = f_var x) \<and>
(\<forall>l r. hom (App l r) = f_app l r (hom l) (hom r)) \<and>
(\<forall>x a. hom (Lam a x) = f_lam (\<lambda>b. ([(a,b)] \<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
apply (lifting hom_res)
done
(* test test
lemma raw_hom_correct:
assumes f1: "f_var \<in> Respects (op= ===> op=)"
and f2: "f_app \<in> Respects (alpha ===> alpha ===> op= ===> op= ===> op=)"
and f3: "f_lam \<in> Respects ((op= ===> alpha) ===> (op= ===> op=) ===> op=)"
shows "\<exists>!hom\<in>Respects (alpha ===> op =).
((\<forall>x. hom (rVar x) = f_var x) \<and>
(\<forall>l r. hom (rApp l r) = f_app l r (hom l) (hom r)) \<and>
(\<forall>x a. hom (rLam a x) = f_lam (\<lambda>b. ([(a,b)]\<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
unfolding Bex1_def
apply(rule ex1I)
sorry
*)
end