new fv/fv_bn function (supp breaks now); exported raw perms and raw funs into separate ML-files
(* Title: nominal_dt_rawperm.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions of the raw permutations and
proof that the raw datatypes are in the
pt-class.
*)
signature NOMINAL_DT_RAWPERM =
sig
val define_raw_perms: Datatype.descr -> (string * sort) list -> thm -> int -> theory ->
(term list * thm list * thm list) * theory
end
structure Nominal_Dt_RawPerm: NOMINAL_DT_RAWPERM =
struct
(* permutation function for one argument
- in case the argument is recursive it returns
permute_fn p arg
- in case the argument is non-recursive it will return
p o arg
*)
fun perm_arg permute_fn_frees p (arg_dty, arg) =
if Datatype_Aux.is_rec_type arg_dty
then (nth permute_fn_frees (Datatype_Aux.body_index arg_dty)) $ p $ arg
else mk_perm p arg
(* generates the equation for the permutation function for one constructor;
i is the index of the corresponding datatype *)
fun perm_eq_constr dt_descr sorts permute_fn_frees i (cnstr_name, dts) =
let
val p = Free ("p", @{typ perm})
val arg_tys = map (Datatype_Aux.typ_of_dtyp dt_descr sorts) dts
val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
val args = map Free (arg_names ~~ arg_tys)
val cnstr = Const (cnstr_name, arg_tys ---> (nth_dtyp dt_descr sorts i))
val lhs = (nth permute_fn_frees i) $ p $ list_comb (cnstr, args)
val rhs = list_comb (cnstr, map (perm_arg permute_fn_frees p) (dts ~~ args))
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
in
(Attrib.empty_binding, eq)
end
(** proves the two pt-type class properties **)
fun prove_permute_zero lthy induct perm_defs perm_fns =
let
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) =
HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy perm_indnames [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun prove_permute_plus lthy induct perm_defs perm_fns =
let
val p = Free ("p", @{typ perm})
val q = Free ("q", @{typ perm})
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq
(perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
(* user_dt_nos refers to the number of "un-unfolded" datatypes
given by the user
*)
fun define_raw_perms (dt_descr:Datatype.descr) sorts induct_thm user_dt_nos thy =
let
val all_full_tnames = map (fn (_, (n, _, _)) => n) dt_descr;
val user_full_tnames = List.take (all_full_tnames, user_dt_nos);
val perm_fn_names = prefix_dt_names dt_descr sorts "permute_"
val perm_fn_types = map (fn (i, _) => perm_ty (nth_dtyp dt_descr sorts i)) dt_descr
val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
fun perm_eq (i, (_, _, constrs)) =
map (perm_eq_constr dt_descr sorts perm_fn_frees i) constrs;
val perm_eqs = maps perm_eq dt_descr;
val lthy =
Theory_Target.instantiation (user_full_tnames, [], @{sort pt}) thy;
val ((perm_funs, perm_eq_thms), lthy') =
Primrec.add_primrec
(map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names) perm_eqs lthy;
val perm_zero_thms = prove_permute_zero lthy' induct_thm perm_eq_thms perm_funs
val perm_plus_thms = prove_permute_plus lthy' induct_thm perm_eq_thms perm_funs
val perm_zero_thms' = List.take (perm_zero_thms, user_dt_nos);
val perm_plus_thms' = List.take (perm_plus_thms, user_dt_nos)
val perms_name = space_implode "_" perm_fn_names
val perms_zero_bind = Binding.name (perms_name ^ "_zero")
val perms_plus_bind = Binding.name (perms_name ^ "_plus")
fun tac _ (_, _, simps) =
Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
fun morphism phi (fvs, dfs, simps) =
(map (Morphism.term phi) fvs, map (Morphism.thm phi) dfs, map (Morphism.thm phi) simps);
in
lthy'
|> snd o (Local_Theory.note ((perms_zero_bind, []), perm_zero_thms'))
|> snd o (Local_Theory.note ((perms_plus_bind, []), perm_plus_thms'))
|> Class_Target.prove_instantiation_exit_result morphism tac
(perm_funs, perm_eq_thms, perm_zero_thms' @ perm_plus_thms')
end
end (* structure *)