new fv/fv_bn function (supp breaks now); exported raw perms and raw funs into separate ML-files
(* Title: nominal_dt_rawperm.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions of the raw bn, fv and fv_bn
functions
*)
signature NOMINAL_DT_RAWFUNS =
sig
(* binding modes and binding clauses *)
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
val setify: Proof.context -> term -> term
val listify: Proof.context -> term -> term
val fold_union: term list -> term
val define_raw_fvs: Datatype_Aux.descr -> (string * sort) list ->
(term * 'a * 'b) list -> (term * int * (int * term option) list list) list ->
bclause list list list -> Proof.context -> term list * term list * thm list * local_theory
end
structure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =
struct
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
(* functions that construct differences and unions
but avoid producing empty atom sets *)
fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"}
| mk_diff (t1, @{term "{}::atom set"}) = t1
| mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2)
fun mk_union (@{term "{}::atom set"}, @{term "{}::atom set"}) = @{term "{}::atom set"}
| mk_union (t1 , @{term "{}::atom set"}) = t1
| mk_union (@{term "{}::atom set"}, t2) = t2
| mk_union (t1, t2) = HOLogic.mk_binop @{const_name sup} (t1, t2)
fun fold_union trms = fold (curry mk_union) trms @{term "{}::atom set"}
(* atom types *)
fun is_atom ctxt ty =
Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})
fun is_atom_set ctxt (Type ("fun", [t, @{typ bool}])) = is_atom ctxt t
| is_atom_set _ _ = false;
fun is_atom_fset ctxt (Type (@{type_name "fset"}, [t])) = is_atom ctxt t
| is_atom_fset _ _ = false;
fun is_atom_list ctxt (Type (@{type_name "list"}, [t])) = is_atom ctxt t
| is_atom_list _ _ = false
(* functions for producing sets, fsets and lists *)
fun mk_atom_set t =
let
val ty = fastype_of t;
val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
val img_ty = atom_ty --> ty --> @{typ "atom set"};
in
(Const (@{const_name image}, img_ty) $ mk_atom_ty atom_ty t)
end;
fun mk_atom_fset t =
let
val ty = fastype_of t;
val atom_ty = dest_fsetT ty --> @{typ atom};
val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
val fset_to_set = @{term "fset_to_set :: atom fset => atom set"}
in
fset_to_set $ (Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t)
end;
fun mk_atom_list t =
let
val ty = fastype_of t;
val atom_ty = dest_listT ty --> @{typ atom};
val map_ty = atom_ty --> ty --> @{typ "atom list"};
in
(Const (@{const_name map}, map_ty) $ mk_atom_ty atom_ty t)
end;
(* functions that coerces atoms, sets and fsets into atom sets ? *)
fun setify ctxt t =
let
val ty = fastype_of t;
in
if is_atom ctxt ty
then HOLogic.mk_set @{typ atom} [mk_atom t]
else if is_atom_set ctxt ty
then mk_atom_set t
else if is_atom_fset ctxt ty
then mk_atom_fset t
else raise TERM ("setify", [t])
end
(* functions that coerces atoms and lists into atom lists ? *)
fun listify ctxt t =
let
val ty = fastype_of t;
in
if is_atom ctxt ty
then HOLogic.mk_list @{typ atom} [mk_atom t]
else if is_atom_list ctxt ty
then mk_atom_set t
else raise TERM ("listify", [t])
end
(* coerces a list into a set *)
fun to_set x =
if fastype_of x = @{typ "atom list"}
then @{term "set::atom list => atom set"} $ x
else x
fun make_body fv_map args i =
let
val arg = nth args i
val ty = fastype_of arg
in
case (AList.lookup (op=) fv_map ty) of
NONE => mk_supp arg
| SOME fv => fv $ arg
end
fun make_binder lthy fv_bn_map args (bn_option, i) =
let
val arg = nth args i
in
case bn_option of
NONE => (setify lthy arg, @{term "{}::atom set"})
| SOME bn => (to_set (bn $ arg), the (AList.lookup (op=) fv_bn_map bn) $ arg)
end
fun make_fv_rhs lthy fv_map fv_bn_map args (BC (_, binders, bodies)) =
let
val t1 = map (make_body fv_map args) bodies
val (t2, t3) = split_list (map (make_binder lthy fv_bn_map args) binders)
in
fold_union (mk_diff (fold_union t1, fold_union t2)::t3)
end
fun make_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv = the (AList.lookup (op=) fv_map ty)
val lhs = fv $ list_comb (constr, args)
val rhs_trms = map (make_fv_rhs lthy fv_map fv_bn_map args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun make_bn_body fv_map fv_bn_map bn_args args i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) fv_map ty) of
NONE => mk_supp arg
| SOME fv => fv $ arg)
| SOME (NONE) => @{term "{}::atom set"}
| SOME (SOME bn) => the (AList.lookup (op=) fv_bn_map bn) $ arg
end
fun make_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause =
case bclause of
BC (_, [], bodies) => fold_union (map (make_bn_body fv_map fv_bn_map bn_args args) bodies)
| BC (_, binders, bodies) =>
let
val t1 = map (make_body fv_map args) bodies
val (t2, t3) = split_list (map (make_binder lthy fv_bn_map args) binders)
in
fold_union (mk_diff (fold_union t1, fold_union t2)::t3)
end
fun make_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, ty, arg_tys)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv_bn = the (AList.lookup (op=) fv_bn_map bn_trm)
val lhs = fv_bn $ list_comb (constr, args)
val rhs_trms = map (make_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun make_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (make_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
fun define_raw_fvs dt_descr sorts bn_funs bn_funs2 bclausesss lthy =
let
val fv_names = prefix_dt_names dt_descr sorts "fv_"
val fv_arg_tys = map (fn (i, _) => nth_dtyp dt_descr sorts i) dt_descr;
val fv_tys = map (fn ty => ty --> @{typ "atom set"}) fv_arg_tys;
val fv_frees = map Free (fv_names ~~ fv_tys);
val fv_map = fv_arg_tys ~~ fv_frees
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_funs)
val (bns2, bn_tys2) = split_list (map (fn (bn, i, _) => (bn, i)) bn_funs2)
val bn_args2 = map (fn (_, _, arg) => arg) bn_funs2
val fv_bn_names2 = map (fn bn => "fv_" ^ (fst (dest_Free bn))) bns2
val fv_bn_arg_tys2 = map (fn i => nth_dtyp dt_descr sorts i) bn_tys2
val fv_bn_tys2 = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys2
val fv_bn_frees2 = map Free (fv_bn_names2 ~~ fv_bn_tys2)
val fv_bn_map2 = bns ~~ fv_bn_frees2
val fv_bn_map3 = bns2 ~~ fv_bn_frees2
val constrs_info = all_dtyp_constrs_types dt_descr sorts
val fv_eqs2 = map2 (map2 (make_fv_eq lthy fv_map fv_bn_map2)) constrs_info bclausesss
val fv_bn_eqs2 = map (make_fv_bn_eqs lthy fv_map fv_bn_map3 constrs_info bclausesss) bn_funs2
val all_fv_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names2)
val all_fv_eqs = map (pair Attrib.empty_binding) (flat fv_eqs2 @ flat fv_bn_eqs2)
fun pat_completeness_auto lthy =
Pat_Completeness.pat_completeness_tac lthy 1
THEN auto_tac (clasimpset_of lthy)
fun prove_termination lthy =
Function.prove_termination NONE
(Lexicographic_Order.lexicographic_order_tac true lthy) lthy
val (_, lthy') = Function.add_function all_fv_names all_fv_eqs
Function_Common.default_config pat_completeness_auto lthy
val (info, lthy'') = prove_termination (Local_Theory.restore lthy')
val {fs, simps, ...} = info;
val morphism = ProofContext.export_morphism lthy'' lthy
val fs_exp = map (Morphism.term morphism) fs
val (fv_frees_exp, fv_bns_exp) = chop (length fv_frees) fs_exp
val simps_exp = Morphism.fact morphism (the simps)
in
(fv_frees_exp, fv_bns_exp, simps_exp, lthy'')
end
end (* structure *)