signature QUOTIENT_TYPE =
sig
val quotient_type: ((string list * binding * mixfix) * (typ * term)) list
-> Proof.context -> Proof.state
val quotient_type_cmd: ((((string list * binding) * mixfix) * string) * string) list
-> Proof.context -> Proof.state
end;
structure Quotient_Type: QUOTIENT_TYPE =
struct
open Quotient_Info;
(* wrappers for define, note, Attrib.internal and theorem_i *)
fun define (name, mx, rhs) lthy =
let
val ((rhs, (_ , thm)), lthy') =
Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
in
((rhs, thm), lthy')
end
fun note (name, thm, attrs) lthy =
let
val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy
in
(thm', lthy')
end
fun intern_attr at = Attrib.internal (K at)
fun theorem after_qed goals ctxt =
let
val goals' = map (rpair []) goals
fun after_qed' thms = after_qed (the_single thms)
in
Proof.theorem_i NONE after_qed' [goals'] ctxt
end
(********************************)
(* definition of quotient types *)
(********************************)
val mem_def1 = @{lemma "y : S ==> S y" by (simp add: mem_def)}
val mem_def2 = @{lemma "S y ==> y : S" by (simp add: mem_def)}
(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
fun typedef_term rel rty lthy =
let
val [x, c] = [("x", rty), ("c", HOLogic.mk_setT rty)]
|> Variable.variant_frees lthy [rel]
|> map Free
in
lambda c (HOLogic.exists_const rty $
lambda x (HOLogic.mk_eq (c, (rel $ x))))
end
(* makes the new type definitions and proves non-emptyness *)
fun typedef_make (vs, qty_name, mx, rel, rty) lthy =
let
val typedef_tac =
EVERY1 [rtac @{thm exI},
rtac mem_def2,
rtac @{thm exI},
rtac @{thm refl}]
in
Local_Theory.theory_result
(Typedef.add_typedef false NONE
(qty_name, vs, mx)
(typedef_term rel rty lthy)
NONE typedef_tac) lthy
end
(* tactic to prove the Quot_Type theorem for the new type *)
fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
let
val rep_thm = (#Rep typedef_info) RS mem_def1
val rep_inv = #Rep_inverse typedef_info
val abs_inv = mem_def2 RS (#Abs_inverse typedef_info)
val rep_inj = #Rep_inject typedef_info
in
(rtac @{thm Quot_Type.intro} THEN'
RANGE [rtac equiv_thm,
rtac rep_thm,
rtac rep_inv,
EVERY' [rtac abs_inv, rtac @{thm exI}, rtac @{thm refl}],
rtac rep_inj]) 1
end
(* proves the Quot_Type theorem *)
fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
let
val quot_type_const = Const (@{const_name "Quot_Type"}, dummyT)
val goal = HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
|> Syntax.check_term lthy
in
Goal.prove lthy [] [] goal
(K (typedef_quot_type_tac equiv_thm typedef_info))
end
(* proves the quotient theorem *)
fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
let
val quotient_const = Const (@{const_name "Quotient"}, dummyT)
val goal = HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
|> Syntax.check_term lthy
val typedef_quotient_thm_tac =
EVERY1 [K (rewrite_goals_tac [abs_def, rep_def]),
rtac @{thm Quot_Type.Quotient},
rtac quot_type_thm]
in
Goal.prove lthy [] [] goal
(K typedef_quotient_thm_tac)
end
(* main function for constructing a quotient type *)
fun mk_typedef_main (((vs, qty_name, mx), (rty, rel)), equiv_thm) lthy =
let
(* generates the typedef *)
val ((qty_full_name, typedef_info), lthy1) = typedef_make (vs, qty_name, mx, rel, rty) lthy
(* abs and rep functions from the typedef *)
val Abs_ty = #abs_type typedef_info
val Rep_ty = #rep_type typedef_info
val Abs_name = #Abs_name typedef_info
val Rep_name = #Rep_name typedef_info
val Abs_const = Const (Abs_name, Rep_ty --> Abs_ty)
val Rep_const = Const (Rep_name, Abs_ty --> Rep_ty)
(* more abstract abs and rep definitions *)
val abs_const = Const (@{const_name "Quot_Type.abs"}, dummyT )
val rep_const = Const (@{const_name "Quot_Type.rep"}, dummyT )
val abs_trm = Syntax.check_term lthy1 (abs_const $ rel $ Abs_const)
val rep_trm = Syntax.check_term lthy1 (rep_const $ Rep_const)
val abs_name = Binding.prefix_name "abs_" qty_name
val rep_name = Binding.prefix_name "rep_" qty_name
val ((abs, abs_def), lthy2) = define (abs_name, NoSyn, abs_trm) lthy1
val ((rep, rep_def), lthy3) = define (rep_name, NoSyn, rep_trm) lthy2
(* quot_type theorem - needed below *)
val quot_thm = typedef_quot_type_thm (rel, Abs_const, Rep_const, equiv_thm, typedef_info) lthy3
(* quotient theorem *)
val quotient_thm = typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_thm) lthy3
val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name
(* name equivalence theorem *)
val equiv_thm_name = Binding.suffix_name "_equivp" qty_name
(* storing the quot-info *)
(* FIXME: VarifyT should not be used - at the moment it allows matching against the types. *)
fun qinfo phi = quotdata_transfer phi
{qtyp = Logic.varifyT Abs_ty, rtyp = Logic.varifyT rty,
equiv_rel = map_types Logic.varifyT rel, equiv_thm = equiv_thm}
val lthy4 = Local_Theory.declaration true
(fn phi => quotdata_update_gen qty_full_name (qinfo phi)) lthy3
in
lthy4
|> note (quotient_thm_name, quotient_thm, [intern_attr quotient_rules_add])
||>> note (equiv_thm_name, equiv_thm, [intern_attr equiv_rules_add])
end
(* sanity checks of the quotient type specifications *)
fun sanity_check ((vs, qty_name, _), (rty, rel)) =
let
val rty_tfreesT = map fst (Term.add_tfreesT rty [])
val rel_tfrees = map fst (Term.add_tfrees rel [])
val rel_frees = map fst (Term.add_frees rel [])
val rel_vars = Term.add_vars rel []
val rel_tvars = Term.add_tvars rel []
val qty_str = (Binding.str_of qty_name) ^ ": "
val illegal_rel_vars =
if null rel_vars andalso null rel_tvars then []
else [qty_str ^ "illegal schematic variable(s) in the relation."]
val dup_vs =
(case duplicates (op =) vs of
[] => []
| dups => [qty_str ^ "duplicate type variable(s) on the lhs: " ^ commas_quote dups])
val extra_rty_tfrees =
(case subtract (op =) vs rty_tfreesT of
[] => []
| extras => [qty_str ^ "extra type variable(s) on the lhs: " ^ commas_quote extras])
val extra_rel_tfrees =
(case subtract (op =) vs rel_tfrees of
[] => []
| extras => [qty_str ^ "extra type variable(s) in the relation: " ^ commas_quote extras])
val illegal_rel_frees =
(case rel_frees of
[] => []
| xs => [qty_str ^ "illegal variable(s) in the relation: " ^ commas_quote xs])
val errs = illegal_rel_vars @ dup_vs @ extra_rty_tfrees @ extra_rel_tfrees @ illegal_rel_frees
in
if null errs then () else error (cat_lines errs)
end
(******************************)
(* interface and syntax setup *)
(******************************)
(* the ML-interface takes a list of 5-tuples consisting of *)
(* *)
(* - the name of the quotient type *)
(* - its free type variables (first argument) *)
(* - its mixfix annotation *)
(* - the type to be quotient *)
(* - the relation according to which the type is quotient *)
fun quotient_type quot_list lthy =
let
fun mk_goal (rty, rel) =
let
val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
in
HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel)
end
val goals = map (mk_goal o snd) quot_list
fun after_qed thms lthy =
fold_map mk_typedef_main (quot_list ~~ thms) lthy |> snd
(* sanity check *)
val _ = map sanity_check quot_list
in
theorem after_qed goals lthy
end
fun quotient_type_cmd spec lthy =
let
fun parse_spec ((((vs, qty_name), mx), rty_str), rel_str) =
let
val rty = Syntax.read_typ lthy rty_str
val rel = Syntax.read_term lthy rel_str
in
((vs, qty_name, mx), (rty, rel))
end
in
quotient_type (map parse_spec spec) lthy
end
val quotspec_parser =
OuterParse.and_list1
((OuterParse.type_args -- OuterParse.binding) --
OuterParse.opt_infix -- (OuterParse.$$$ "=" |-- OuterParse.typ) --
(OuterParse.$$$ "/" |-- OuterParse.term))
val _ = OuterKeyword.keyword "/"
val _ =
OuterSyntax.local_theory_to_proof "quotient_type"
"quotient type definitions (require equivalence proofs)"
OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
end; (* structure *)