Nominal/Tacs.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 21 Apr 2010 10:09:07 +0200
changeset 1913 39951d71bfce
parent 1656 c9d3dda79fe3
child 2049 38bbccdf9ff9
permissions -rw-r--r--
merged

theory Tacs
imports Main
begin

(* General not-nominal/quotient functionality useful for proving *)

(* A version of case_rule_tac that takes more exhaust rules *)
ML {*
fun case_rules_tac ctxt0 s rules i st =
let
  val (_, ctxt) = Variable.focus_subgoal i st ctxt0;
  val ty = fastype_of (ProofContext.read_term_schematic ctxt s)
  fun exhaust_ty thm = fastype_of (hd (Induct.vars_of (Thm.term_of (Thm.cprem_of thm 1))));
  val ty_rules = filter (fn x => exhaust_ty x = ty) rules;
in
  InductTacs.case_rule_tac ctxt0 s (hd ty_rules) i st
end
*}

ML {*
fun mk_conjl props =
  fold (fn a => fn b =>
    if a = @{term True} then b else
    if b = @{term True} then a else
    HOLogic.mk_conj (a, b)) (rev props) @{term True};
*}

ML {*
val split_conj_tac = REPEAT o etac conjE THEN' TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)
*}

(* Given function for buildng a goal for an input, prepares a
   one common goals for all the inputs and proves it by induction
   together *)
ML {*
fun prove_by_induct tys build_goal ind utac inputs ctxt =
let
  val names = Datatype_Prop.make_tnames tys;
  val (names', ctxt') = Variable.variant_fixes names ctxt;
  val frees = map Free (names' ~~ tys);
  val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ frees)) inputs ctxt';
  val gls = flat gls_lists;
  fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls;
  val trm_gl_lists = map trm_gls_map frees;
  val trm_gl_insts = map2 (fn n => fn l => [NONE, if l = [] then NONE else SOME n]) names' trm_gl_lists
  val trm_gls = map mk_conjl trm_gl_lists;
  val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj trm_gls);
  fun tac {context,...} = (
    InductTacs.induct_rules_tac context [(flat trm_gl_insts)] [ind]
    THEN_ALL_NEW split_conj_tac THEN_ALL_NEW utac) 1
  val th_loc = Goal.prove ctxt'' [] [] gl tac
  val ths_loc = HOLogic.conj_elims th_loc
  val ths = Variable.export ctxt'' ctxt ths_loc
in
  filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths
end
*}

(* An induction for a single relation is "R x y \<Longrightarrow> P x y"
   but for multiple relations is "(R1 x y \<longrightarrow> P x y) \<and> (R2 a b \<longrightarrow> P2 a b)" *)
ML {*
fun rel_indtac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct
*}

ML {*
fun prove_by_rel_induct alphas build_goal ind utac inputs ctxt =
let
  val tys = map (domain_type o fastype_of) alphas;
  val names = Datatype_Prop.make_tnames tys;
  val (namesl, ctxt') = Variable.variant_fixes names ctxt;
  val (namesr, ctxt'') = Variable.variant_fixes names ctxt';
  val freesl = map Free (namesl ~~ tys);
  val freesr = map Free (namesr ~~ tys);
  val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ (freesl ~~ freesr))) inputs ctxt'';
  val gls = flat gls_lists;
  fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls;
  val trm_gl_lists = map trm_gls_map freesl;
  val trm_gls = map mk_conjl trm_gl_lists;
  val pgls = map
    (fn ((alpha, gl), (l, r)) => HOLogic.mk_imp (alpha $ l $ r, gl)) 
    ((alphas ~~ trm_gls) ~~ (freesl ~~ freesr))
  val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj pgls);
  fun tac {context,...} = (rel_indtac ind THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
    TRY o rtac @{thm TrueI} THEN_ALL_NEW utac context) 1
  val th_loc = Goal.prove ctxt'' [] [] gl tac
  val ths_loc = HOLogic.conj_elims th_loc
  val ths = Variable.export ctxt'' ctxt ths_loc
in
  filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths
end
*}
(* Code for transforming an inductive relation to a function *)
ML {*
fun rel_inj_tac dist_inj intrs elims =
  SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE'
  (rtac @{thm iffI} THEN' RANGE [
     (eresolve_tac elims THEN_ALL_NEW
       asm_full_simp_tac (HOL_ss addsimps dist_inj)
     ),
     asm_full_simp_tac (HOL_ss addsimps intrs)])
*}

ML {*
fun build_rel_inj_gl thm =
  let
    val prop = prop_of thm;
    val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop);
    val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop);
    fun list_conj l = foldr1 HOLogic.mk_conj l;
  in
    if hyps = [] then concl
    else HOLogic.mk_eq (concl, list_conj hyps)
  end;
*}

ML {*
fun build_rel_inj intrs dist_inj elims ctxt =
let
  val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt;
  val gls = map (HOLogic.mk_Trueprop o build_rel_inj_gl) thms_imp;
  fun tac _ = rel_inj_tac dist_inj intrs elims 1;
  val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls;
in
  Variable.export ctxt' ctxt thms
end
*}

ML {*
fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm
*}

(* Introduces an implication and immediately eliminates it by cases *)
ML {*
fun imp_elim_tac case_rules =
  Subgoal.FOCUS (fn {concl, context, ...} =>
    case term_of concl of
      _ $ (_ $ asm $ _) =>
        let
          fun filter_fn case_rule = (
            case Logic.strip_assums_hyp (prop_of case_rule) of
              ((_ $ asmc) :: _) =>
                let
                  val thy = ProofContext.theory_of context
                in
                  Pattern.matches thy (asmc, asm)
                end
            | _ => false)
          val matching_rules = filter filter_fn case_rules
        in
         (rtac impI THEN' rotate_tac (~1) THEN' eresolve_tac matching_rules) 1
        end
    | _ => no_tac)
*}

ML {*
fun is_ex (Const ("Ex", _) $ Abs _) = true
  | is_ex _ = false;
*}

ML {*
fun dtyp_no_of_typ _ (TFree (n, _)) = error "dtyp_no_of_typ: Illegal free"
  | dtyp_no_of_typ _ (TVar _) = error "dtyp_no_of_typ: Illegal schematic"
  | dtyp_no_of_typ dts (Type (tname, Ts)) =
      case try (find_index (curry op = tname o fst)) dts of
        NONE => error "dtyp_no_of_typ: Illegal recursion"
      | SOME i => i
*}

end