defined the "count-bound-variables-occurences" function which has an accumulator like trans
theory Weakening
imports "../Nominal2"
begin
section {* The Weakening property in the simply-typed lambda-calculus *}
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _" [100,100] 100)
text {* Typing *}
nominal_datatype ty =
TVar string
| TFun ty ty ("_ \<rightarrow> _" [100,100] 100)
lemma fresh_ty:
fixes x::"name"
and T::"ty"
shows "atom x \<sharp> T"
by (nominal_induct T rule: ty.strong_induct)
(simp_all add: ty.fresh pure_fresh)
text {* Valid typing contexts *}
inductive
valid :: "(name \<times> ty) list \<Rightarrow> bool"
where
v_Nil[intro]: "valid []"
| v_Cons[intro]: "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T) # Gamma)"
equivariance valid
text {* Typing judgements *}
inductive
typing :: "(name \<times> ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60)
where
t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
| t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
| t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x]. t : T1 \<rightarrow> T2"
equivariance typing
text {* Strong induction principle for typing judgements *}
nominal_inductive typing
avoids t_Lam: "x"
by (simp_all add: fresh_star_def fresh_ty lam.fresh)
abbreviation
"sub_context" :: "(name \<times> ty) list \<Rightarrow> (name \<times> ty) list \<Rightarrow> bool" (infixr "\<subseteq>" 60)
where
"\<Gamma>1 \<subseteq> \<Gamma>2 \<equiv> \<forall>x T. (x, T) \<in> set \<Gamma>1 \<longrightarrow> (x, T) \<in> set \<Gamma>2"
text {* The proof *}
lemma weakening_version1:
fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
and t ::"lam"
and \<tau> ::"ty"
assumes a: "\<Gamma>1 \<turnstile> t : T"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t : T"
using a b c
proof (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
case (t_Var \<Gamma>1 x T) (* variable case *)
have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
moreover
have "valid \<Gamma>2" by fact
moreover
have "(x, T) \<in> set \<Gamma>1" by fact
ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
next
case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
have vc: "atom x \<sharp> \<Gamma>2" by fact (* variable convention *)
have ih: "\<lbrakk>valid ((x, T1) # \<Gamma>2); (x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2\<rbrakk> \<Longrightarrow> (x, T1) # \<Gamma>2 \<turnstile> t : T2" by fact
have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
then have "(x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2" by simp
moreover
have "valid \<Gamma>2" by fact
then have "valid ((x, T1) # \<Gamma>2)" using vc by auto
ultimately have "(x, T1) # \<Gamma>2 \<turnstile> t : T2" using ih by simp
with vc show "\<Gamma>2 \<turnstile> Lam [x]. t : T1 \<rightarrow> T2" by auto
qed (auto) (* app case *)
lemma weakening_version2:
fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
assumes a: "\<Gamma>1 \<turnstile> t : T"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t : T"
using a b c
by (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
(auto | atomize)+
text {* A version with finite sets as typing contexts *}
inductive
valid2 :: "(name \<times> ty) fset \<Rightarrow> bool"
where
v2_Empty[intro]: "valid2 {||}"
| v2_Insert[intro]: "\<lbrakk>(x, T) |\<notin>| Gamma; valid2 Gamma\<rbrakk> \<Longrightarrow> valid2 (insert_fset (x, T) Gamma)"
equivariance valid2
inductive
typing2 :: "(name \<times> ty) fset \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ 2\<turnstile> _ : _" [60,60,60] 60)
where
t2_Var[intro]: "\<lbrakk>valid2 \<Gamma>; (x, T) |\<in>| \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> Var x : T"
| t2_App[intro]: "\<lbrakk>\<Gamma> 2\<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> 2\<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> App t1 t2 : T2"
| t2_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; insert_fset (x, T1) \<Gamma> 2\<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> Lam [x]. t : T1 \<rightarrow> T2"
equivariance typing2
nominal_inductive typing2
avoids t2_Lam: "x"
by (simp_all add: fresh_star_def fresh_ty lam.fresh)
lemma weakening_version3:
fixes \<Gamma>::"(name \<times> ty) fset"
assumes a: "\<Gamma> 2\<turnstile> t : T"
and b: "(x, T') |\<notin>| \<Gamma>"
shows "{|(x, T')|} |\<union>| \<Gamma> 2\<turnstile> t : T"
using a b
apply(nominal_induct \<Gamma> t T avoiding: x rule: typing2.strong_induct)
apply(auto)[2]
apply(rule t2_Lam)
apply(simp add: fresh_insert_fset fresh_Pair fresh_ty)
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule meta_mp)
apply(simp add: fresh_at_base)
apply(simp add: insert_fset_left_comm)
done
lemma weakening_version4:
fixes \<Gamma>::"(name \<times> ty) fset"
assumes a: "\<Gamma> 2\<turnstile> t : T"
and b: "(x, T') |\<notin>| \<Gamma>"
shows "{|(x, T')|} |\<union>| \<Gamma> 2\<turnstile> t : T"
using a b
apply(induct \<Gamma> t T arbitrary: x)
apply(auto)[2]
apply(rule t2_Lam)
oops
end