theory TypeSchemes
imports "../Nominal2"
begin
section {*** Type Schemes ***}
atom_decl name
(* defined as a single nominal datatype *)
nominal_datatype ty =
Var "name"
| Fun "ty" "ty"
and tys =
All xs::"name fset" ty::"ty" bind (res) xs in ty
thm ty_tys.distinct
thm ty_tys.induct
thm ty_tys.exhaust
thm ty_tys.fv_defs
thm ty_tys.bn_defs
thm ty_tys.perm_simps
thm ty_tys.eq_iff
thm ty_tys.fv_bn_eqvt
thm ty_tys.size_eqvt
thm ty_tys.supports
thm ty_tys.supp
thm ty_tys.fresh
(* defined as two separate nominal datatypes *)
nominal_datatype ty2 =
Var2 "name"
| Fun2 "ty2" "ty2"
nominal_datatype tys2 =
All2 xs::"name fset" ty::"ty2" bind (res) xs in ty
thm tys2.distinct
thm tys2.induct
thm tys2.exhaust
thm tys2.fv_defs
thm tys2.bn_defs
thm tys2.perm_simps
thm tys2.eq_iff
thm tys2.fv_bn_eqvt
thm tys2.size_eqvt
thm tys2.supports
thm tys2.supp
thm tys2.fresh
lemma strong_exhaust:
fixes c::"'a::fs"
assumes "\<And>names ty. \<lbrakk>fset (map_fset atom names) \<sharp>* c; y = All2 names ty\<rbrakk> \<Longrightarrow> P"
shows "P"
apply(rule_tac y="y" in tys2.exhaust)
apply(rename_tac names ty2)
apply(subgoal_tac "\<exists>q. (q \<bullet> (fset (map_fset atom names))) \<sharp>* c \<and> supp (All2 names ty2) \<sharp>* q")
apply(erule exE)
apply(perm_simp)
apply(erule conjE)
apply(rule assms(1))
apply(assumption)
apply(clarify)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp)
apply(simp add: fresh_star_def)
apply(simp add: tys2.fresh)
done
lemma strong_induct:
fixes c::"'a::fs"
assumes "\<And>names ty2 c. fset (map_fset atom names) \<sharp>* c \<Longrightarrow> P c (All2 names ty2)"
shows "P c tys"
using assms
apply(induction_schema)
apply(rule_tac y="tys" in strong_exhaust)
apply(blast)
apply(relation "measure (\<lambda>(x,y). size y)")
apply(simp_all add: tys2.size)
done
text {* Some Tests *}
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))"
apply(simp add: ty_tys.eq_iff)
apply(simp add: Abs_eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas)
apply(simp add: fresh_star_def fresh_zero_perm supp_at_base)
apply(simp add: ty_tys.supp supp_at_base)
done
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))"
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
apply(simp add: alphas fresh_star_def supp_at_base ty_tys.supp)
done
lemma
shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))"
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas fresh_star_def ty_tys.supp supp_at_base)
done
lemma
assumes a: "a \<noteq> b"
shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))"
using a
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(clarify)
apply(simp add: alphas fresh_star_def ty_tys.eq_iff ty_tys.supp supp_at_base)
apply auto
done
text {* Some lemmas about fsets *}
lemma atom_map_fset_cong:
shows "map_fset atom x = map_fset atom y \<longleftrightarrow> x = y"
apply(rule inj_map_fset_cong)
apply(simp add: inj_on_def)
done
lemma supp_map_fset_atom:
shows "supp (map_fset atom S) = supp S"
unfolding supp_def
apply(perm_simp)
apply(simp add: atom_map_fset_cong)
done
lemma supp_at_fset:
fixes S::"('a::at_base) fset"
shows "supp S = fset (map_fset atom S)"
apply (induct S)
apply (simp add: supp_empty_fset)
apply (simp add: supp_insert_fset)
apply (simp add: supp_at_base)
done
lemma fresh_star_atom:
fixes a::"'a::at_base"
shows "fset S \<sharp>* a \<Longrightarrow> atom a \<sharp> fset S"
apply (induct S)
apply (simp add: fresh_set_empty)
apply simp
apply (unfold fresh_def)
apply (simp add: supp_of_finite_insert)
apply (rule conjI)
apply (unfold fresh_star_def)
apply simp
apply (unfold fresh_def)
apply (simp add: supp_at_base supp_atom)
apply clarify
apply auto
done
(*
fun
lookup :: "(name \<times> ty) list \<Rightarrow> name \<Rightarrow> ty"
where
"lookup [] n = Var n"
| "lookup ((p, s) # t) n = (if p = n then s else lookup t n)"
locale subst_loc =
fixes
subst :: "(name \<times> ty) list \<Rightarrow> ty \<Rightarrow> ty"
and substs :: "(name \<times> ty) list \<Rightarrow> tys \<Rightarrow> tys"
assumes
s1: "subst \<theta> (Var n) = lookup \<theta> n"
and s2: "subst \<theta> (Fun l r) = Fun (subst \<theta> l) (subst \<theta> r)"
and s3: "fset (fmap atom xs) \<sharp>* \<theta> \<Longrightarrow> substs \<theta> (All xs t) = All xs (subst \<theta> t)"
begin
lemma subst_ty:
assumes x: "atom x \<sharp> t"
shows "subst [(x, S)] t = t"
using x
apply (induct t rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
by (simp_all add: s1 s2 fresh_def ty_tys.fv[simplified ty_tys.supp] supp_at_base)
lemma subst_tyS:
shows "atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T"
apply (rule strong_induct[of
"\<lambda>a t. True" "\<lambda>(x, S) T. (atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T)" _ "t" "(x, S)", simplified])
apply clarify
apply (subst s3)
apply (simp add: fresh_star_def fresh_Cons fresh_Nil)
apply (subst subst_ty)
apply (simp_all add: fresh_star_prod_elim)
apply (drule fresh_star_atom)
apply (simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])
apply (subgoal_tac "atom a \<notin> fset (fmap atom fset)")
apply blast
apply (metis supp_finite_atom_set finite_fset)
done
lemma subst_lemma_pre:
"z \<sharp> (N,L) \<longrightarrow> z \<sharp> (subst [(y, L)] N)"
apply (induct N rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
apply (simp add: s1)
apply (auto simp add: fresh_Pair)
apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])[3]
apply (simp add: s2)
apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])
done
lemma substs_lemma_pre:
"atom z \<sharp> (N,L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N)"
apply (rule strong_induct[of
"\<lambda>a t. True" "\<lambda>(z, y, L) N. (atom z \<sharp> (N, L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N))" _ _ "(z, y, L)", simplified])
apply clarify
apply (subst s3)
apply (simp add: fresh_star_def fresh_Cons fresh_Nil fresh_Pair)
apply (simp_all add: fresh_star_prod_elim fresh_Pair)
apply clarify
apply (drule fresh_star_atom)
apply (drule fresh_star_atom)
apply (simp add: fresh_def)
apply (simp only: ty_tys.fv[simplified ty_tys.supp])
apply (subgoal_tac "atom a \<notin> supp (subst [(aa, b)] t)")
apply blast
apply (subgoal_tac "atom a \<notin> supp t")
apply (fold fresh_def)[1]
apply (rule mp[OF subst_lemma_pre])
apply (simp add: fresh_Pair)
apply (subgoal_tac "atom a \<notin> (fset (fmap atom fset))")
apply blast
apply (metis supp_finite_atom_set finite_fset)
done
lemma subst_lemma:
shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
subst [(y, L)] (subst [(x, N)] M) =
subst [(x, (subst [(y, L)] N))] (subst [(y, L)] M)"
apply (induct M rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
apply (simp_all add: s1 s2)
apply clarify
apply (subst (2) subst_ty)
apply simp_all
done
lemma substs_lemma:
shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
substs [(y, L)] (substs [(x, N)] M) =
substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)"
apply (rule strong_induct[of
"\<lambda>a t. True" "\<lambda>(x, y, N, L) M. x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
substs [(y, L)] (substs [(x, N)] M) =
substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)" _ _ "(x, y, N, L)", simplified])
apply clarify
apply (simp_all add: fresh_star_prod_elim fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (rule ballI)
apply (rule mp[OF subst_lemma_pre])
apply (simp add: fresh_Pair)
apply (subst subst_lemma)
apply simp_all
done
end
*)
end