theory IntEx
imports QuotMain
begin
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient my_int = "nat \<times> nat" / intrel
apply(unfold EQUIV_def)
apply(auto simp add: mem_def expand_fun_eq)
done
print_theorems
quotient_def (for my_int)
ZERO::"my_int"
where
"ZERO \<equiv> (0::nat, 0::nat)"
quotient_def (for my_int)
ONE::"my_int"
where
"ONE \<equiv> (1::nat, 0::nat)"
term ONE
thm ONE_def
fun
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_plus (x, y) (u, v) = (x + u, y + v)"
quotient_def (for my_int)
PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"PLUS \<equiv> my_plus"
term PLUS
thm PLUS_def
fun
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_neg (x, y) = (y, x)"
quotient_def (for my_int)
NEG::"my_int \<Rightarrow> my_int"
where
"NEG \<equiv> my_neg"
term NEG
thm NEG_def
definition
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MINUS z w = PLUS z (NEG w)"
fun
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
quotient_def (for my_int)
MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MULT \<equiv> my_mult"
term MULT
thm MULT_def
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"my_le (x, y) (u, v) = (x+v \<le> u+y)"
quotient_def (for my_int)
LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LE \<equiv> my_le"
term LE
thm LE_def
definition
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LESS z w = (LE z w \<and> z \<noteq> w)"
term LESS
thm LESS_def
definition
ABS :: "my_int \<Rightarrow> my_int"
where
"ABS i = (if (LESS i ZERO) then (NEG i) else i)"
definition
SIGN :: "my_int \<Rightarrow> my_int"
where
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"
lemma plus_sym_pre:
shows "intrel (my_plus a b) (my_plus b a)"
apply(cases a)
apply(cases b)
apply(auto)
done
lemma ho_plus_rsp:
"(intrel ===> intrel ===> intrel) my_plus my_plus"
by (simp)
ML {* val qty = @{typ "my_int"} *}
ML {* val ty_name = "my_int" *}
ML {* val rsp_thms = @{thms ho_plus_rsp} @ @{thms ho_all_prs ho_ex_prs} *}
ML {* val t_defs = @{thms PLUS_def} *}
ML {*
fun lift_thm_my_int lthy t =
lift_thm lthy qty ty_name rsp_thms t_defs t
*}
ML {*
val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty;
*}
ML {* lift_thm_my_int @{context} @{thm plus_sym_pre} *}
lemma plus_assoc_pre:
shows "intrel (my_plus (my_plus i j) k) (my_plus i (my_plus j k))"
apply (cases i)
apply (cases j)
apply (cases k)
apply (simp)
done
ML {* lift_thm_my_int @{context} @{thm plus_assoc_pre} *}
text {* Below is the construction site code used if things do not work *}
ML {* val abs = findabs rty (prop_of (atomize_thm @{thm plus_sym_pre})) *}
ML {* val simp_lam_prs_thms = map (make_simp_lam_prs_thm @{context} quot) abs *}
ML {* val t_defs_sym = add_lower_defs @{context} t_defs *}
ML {* val t_a = atomize_thm @{thm plus_sym_pre} *}
ML {* val t_r = regularize t_a rty rel rel_eqv @{context} *}
ML {* val t_t = repabs @{context} t_r consts rty qty quot rel_refl trans2 rsp_thms *}
ML {* val t_l = repeat_eqsubst_thm @{context} simp_lam_prs_thms t_t *}
ML {* val t_a = simp_allex_prs @{context} quot t_l *}
ML {* val t_d = repeat_eqsubst_thm @{context} t_defs_sym t_a *}
ML {* val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d *}
ML {* ObjectLogic.rulify t_r *}