header {* Constant definitions *}+ −
+ −
theory Consts imports Utils begin+ −
+ −
fun Umn :: "nat \<Rightarrow> nat \<Rightarrow> lam"+ −
where+ −
[simp del]: "Umn 0 n = \<integral>(cn 0). V (cn n)"+ −
| [simp del]: "Umn (Suc m) n = \<integral>(cn (Suc m)). Umn m n"+ −
+ −
lemma [simp]: "2 = Suc 1"+ −
by auto+ −
+ −
lemma Lam_U:+ −
"x \<noteq> y \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> z \<Longrightarrow> Umn 2 0 = \<integral>x. \<integral>y. \<integral>z. V z"+ −
"x \<noteq> y \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> z \<Longrightarrow> Umn 2 1 = \<integral>x. \<integral>y. \<integral>z. V y"+ −
"x \<noteq> y \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> z \<Longrightarrow> Umn 2 2 = \<integral>x. \<integral>y. \<integral>z. V x"+ −
apply (simp_all add: Umn.simps Abs1_eq_iff lam.fresh fresh_at_base flip_def[symmetric] Umn.simps)+ −
apply (smt Zero_not_Suc cnd flip_at_base_simps flip_at_simps)++ −
done+ −
+ −
lemma a: "n \<le> m \<Longrightarrow> atom (cn n) \<notin> supp (Umn m n)"+ −
apply (induct m)+ −
apply (auto simp add: lam.supp supp_at_base Umn.simps)+ −
by smt+ −
+ −
lemma b: "supp (Umn m n) \<subseteq> {atom (cn n)}"+ −
by (induct m) (auto simp add: lam.supp supp_at_base Umn.simps)+ −
+ −
lemma supp_U[simp]: "n \<le> m \<Longrightarrow> supp (Umn m n) = {}"+ −
using a b+ −
by blast+ −
+ −
lemma U_eqvt:+ −
"n \<le> m \<Longrightarrow> p \<bullet> (Umn m n) = Umn m n"+ −
by (rule_tac [!] perm_supp_eq) (simp_all add: fresh_star_def fresh_def)+ −
+ −
definition Var where "Var \<equiv> \<integral>cx. \<integral>cy. (V cy \<cdot> (Umn 2 2) \<cdot> V cx \<cdot> V cy)"+ −
definition "App \<equiv> \<integral>cx. \<integral>cy. \<integral>cz. (V cz \<cdot> Umn 2 1 \<cdot> V cx \<cdot> V cy \<cdot> V cz)"+ −
definition "Abs \<equiv> \<integral>cx. \<integral>cy. (V cy \<cdot> Umn 2 0 \<cdot> V cx \<cdot> V cy)"+ −
+ −
lemma Var_App_Abs:+ −
"x \<noteq> e \<Longrightarrow> Var = \<integral>x. \<integral>e. (V e \<cdot> Umn 2 2 \<cdot> V x \<cdot> V e)"+ −
"e \<noteq> x \<Longrightarrow> e \<noteq> y \<Longrightarrow> x \<noteq> y \<Longrightarrow> App = \<integral>x. \<integral>y. \<integral>e. (V e \<cdot> Umn 2 1 \<cdot> V x \<cdot> V y \<cdot> V e)"+ −
"x \<noteq> e \<Longrightarrow> Abs = \<integral>x. \<integral>e. (V e \<cdot> Umn 2 0 \<cdot> V x \<cdot> V e)"+ −
unfolding Var_def App_def Abs_def+ −
by (simp_all add: Abs1_eq_iff lam.fresh flip_def[symmetric] U_eqvt fresh_def lam.supp supp_at_base)+ −
(smt cx_cy_cz permute_flip_at Zero_not_Suc cnd flip_at_base_simps flip_at_simps)++ −
+ −
lemma Var_app:+ −
"Var \<cdot> x \<cdot> e \<approx> e \<cdot> Umn 2 2 \<cdot> x \<cdot> e"+ −
by (rule lam2_fast_app) (simp_all add: Var_App_Abs)+ −
+ −
lemma App_app:+ −
"App \<cdot> x \<cdot> y \<cdot> e \<approx> e \<cdot> Umn 2 1 \<cdot> x \<cdot> y \<cdot> e"+ −
by (rule lam3_fast_app[OF Var_App_Abs(2)]) (simp_all)+ −
+ −
lemma Abs_app:+ −
"Abs \<cdot> x \<cdot> e \<approx> e \<cdot> Umn 2 0 \<cdot> x \<cdot> e"+ −
by (rule lam2_fast_app) (simp_all add: Var_App_Abs)+ −
+ −
lemma supp_Var_App_Abs[simp]:+ −
"supp Var = {}" "supp App = {}" "supp Abs = {}"+ −
by (simp_all add: Var_def App_def Abs_def lam.supp supp_at_base) blast++ −
+ −
lemma Var_App_Abs_eqvt[eqvt]:+ −
"p \<bullet> Var = Var" "p \<bullet> App = App" "p \<bullet> Abs = Abs"+ −
by (rule_tac [!] perm_supp_eq) (simp_all add: fresh_star_def fresh_def)+ −
+ −
nominal_primrec+ −
Numeral :: "lam \<Rightarrow> lam" ("\<lbrace>_\<rbrace>" 1000)+ −
where+ −
"\<lbrace>V x\<rbrace> = Var \<cdot> (V x)"+ −
| Ap: "\<lbrace>M \<cdot> N\<rbrace> = App \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace>"+ −
| "\<lbrace>\<integral>x. M\<rbrace> = Abs \<cdot> (\<integral>x. \<lbrace>M\<rbrace>)"+ −
proof auto+ −
fix x :: lam and P+ −
assume "\<And>xa. x = V xa \<Longrightarrow> P" "\<And>M N. x = M \<cdot> N \<Longrightarrow> P" "\<And>xa M. x = \<integral> xa. M \<Longrightarrow> P"+ −
then show "P"+ −
by (rule_tac y="x" and c="0 :: perm" in lam.strong_exhaust)+ −
(auto simp add: Abs1_eq_iff fresh_star_def)[3]+ −
next+ −
fix x :: var and M and xa :: var and Ma+ −
assume "[[atom x]]lst. M = [[atom xa]]lst. Ma"+ −
"eqvt_at Numeral_sumC M"+ −
then show "[[atom x]]lst. Numeral_sumC M = [[atom xa]]lst. Numeral_sumC Ma"+ −
apply -+ −
apply (erule Abs_lst1_fcb)+ −
apply (simp_all add: Abs_fresh_iff)+ −
apply (erule fresh_eqvt_at)+ −
apply (simp_all add: finite_supp Abs1_eq_iff eqvt_at_def)+ −
done+ −
next+ −
show "eqvt Numeral_graph" unfolding eqvt_def Numeral_graph_def+ −
by (rule, perm_simp, rule)+ −
qed+ −
+ −
termination (eqvt) by lexicographic_order+ −
+ −
lemma supp_numeral[simp]:+ −
"supp \<lbrace>x\<rbrace> = supp x"+ −
by (induct x rule: lam.induct)+ −
(simp_all add: lam.supp)+ −
+ −
lemma fresh_numeral[simp]:+ −
"x \<sharp> \<lbrace>y\<rbrace> = x \<sharp> y"+ −
unfolding fresh_def by simp+ −
+ −
fun app_lst :: "var \<Rightarrow> lam list \<Rightarrow> lam" where+ −
"app_lst n [] = V n"+ −
| "app_lst n (h # t) = Ap (app_lst n t) h"+ −
+ −
lemma app_lst_eqvt[eqvt]: "p \<bullet> (app_lst t ts) = app_lst (p \<bullet> t) (p \<bullet> ts)"+ −
by (induct ts arbitrary: t p) (simp_all add: eqvts)+ −
+ −
lemma supp_app_lst: "supp (app_lst x l) = {atom x} \<union> supp l"+ −
apply (induct l)+ −
apply (simp_all add: supp_Nil lam.supp supp_at_base supp_Cons)+ −
by blast+ −
+ −
lemma app_lst_eq_iff: "app_lst n M = app_lst n N \<Longrightarrow> M = N"+ −
by (induct M N rule: list_induct2') simp_all+ −
+ −
lemma app_lst_rev_eq_iff: "app_lst n (rev M) = app_lst n (rev N) \<Longrightarrow> M = N"+ −
by (drule app_lst_eq_iff) simp+ −
+ −
nominal_primrec+ −
Ltgt :: "lam list \<Rightarrow> lam" ("\<guillemotleft>_\<guillemotright>" 1000)+ −
where+ −
[simp del]: "atom x \<sharp> l \<Longrightarrow> \<guillemotleft>l\<guillemotright> = \<integral>x. (app_lst x (rev l))"+ −
unfolding eqvt_def Ltgt_graph_def+ −
apply (rule, perm_simp, rule, rule)+ −
apply (rule_tac x="x" and ?'a="var" in obtain_fresh)+ −
apply (simp_all add: Abs1_eq_iff lam.fresh swap_fresh_fresh fresh_at_base)+ −
apply (simp add: eqvts swap_fresh_fresh)+ −
apply (case_tac "x = xa")+ −
apply simp_all+ −
apply (subgoal_tac "eqvt app_lst")+ −
apply (erule fresh_fun_eqvt_app2)+ −
apply (simp_all add: fresh_at_base lam.fresh eqvt_def eqvts_raw fresh_rev)+ −
done+ −
+ −
termination (eqvt) by lexicographic_order+ −
+ −
lemma ltgt_eq_iff[simp]:+ −
"\<guillemotleft>M\<guillemotright> = \<guillemotleft>N\<guillemotright> \<longleftrightarrow> M = N"+ −
proof auto+ −
obtain x :: var where "atom x \<sharp> (M, N)" using obtain_fresh by auto+ −
then have *: "atom x \<sharp> M" "atom x \<sharp> N" using fresh_Pair by simp_all+ −
then show "(\<guillemotleft>M\<guillemotright> = \<guillemotleft>N\<guillemotright>) \<Longrightarrow> (M = N)" by (simp add: Abs1_eq_iff app_lst_rev_eq_iff Ltgt.simps)+ −
qed+ −
+ −
lemma Ltgt1_app: "\<guillemotleft>[M]\<guillemotright> \<cdot> N \<approx> N \<cdot> M"+ −
proof -+ −
obtain x :: var where "atom x \<sharp> (M, N)" using obtain_fresh by auto+ −
then have "atom x \<sharp> M" "atom x \<sharp> N" using fresh_Pair by simp_all+ −
then show ?thesis+ −
apply (subst Ltgt.simps)+ −
apply (simp add: fresh_Cons fresh_Nil)+ −
apply (rule b3, rule bI, simp add: b1)+ −
done+ −
qed+ −
+ −
lemma Ltgt3_app: "\<guillemotleft>[M,N,P]\<guillemotright> \<cdot> R \<approx> R \<cdot> M \<cdot> N \<cdot> P"+ −
proof -+ −
obtain x :: var where "atom x \<sharp> (M, N, P, R)" using obtain_fresh by auto+ −
then have *: "atom x \<sharp> (M,N,P)" "atom x \<sharp> R" using fresh_Pair by simp_all+ −
then have s: "V x \<cdot> M \<cdot> N \<cdot> P [x ::= R] \<approx> R \<cdot> M \<cdot> N \<cdot> P" using b1 by simp+ −
show ?thesis using *+ −
apply (subst Ltgt.simps)+ −
apply (simp add: fresh_Cons fresh_Nil fresh_Pair_elim)+ −
apply auto[1]+ −
apply (rule b3, rule bI, simp add: b1)+ −
done+ −
qed+ −
+ −
lemma supp_ltgt[simp]:+ −
"supp \<guillemotleft>t\<guillemotright> = supp t"+ −
proof -+ −
obtain x :: var where *:"atom x \<sharp> t" using obtain_fresh by auto+ −
show ?thesis using *+ −
by (simp_all add: Ltgt.simps lam.supp supp_at_base supp_Nil supp_app_lst supp_rev fresh_def)+ −
qed+ −
+ −
lemma fresh_ltgt[simp]:+ −
"x \<sharp> \<guillemotleft>[y]\<guillemotright> = x \<sharp> y"+ −
"x \<sharp> \<guillemotleft>[t,r,s]\<guillemotright> = x \<sharp> (t,r,s)"+ −
by (simp_all add: fresh_def supp_Cons supp_Nil supp_Pair)+ −
+ −
lemma Ltgt1_subst[simp]:+ −
"\<guillemotleft>[M]\<guillemotright> [y ::= A] = \<guillemotleft>[M [y ::= A]]\<guillemotright>"+ −
proof -+ −
obtain x :: var where a: "atom x \<sharp> (M, A, y, M [y ::= A])" using obtain_fresh by blast+ −
have "x \<noteq> y" using a[simplified fresh_Pair fresh_at_base] by simp+ −
then show ?thesis+ −
apply (subst Ltgt.simps)+ −
using a apply (simp add: fresh_Nil fresh_Cons fresh_Pair_elim)+ −
apply (subst Ltgt.simps)+ −
using a apply (simp add: fresh_Pair_elim fresh_Nil fresh_Cons)+ −
apply (simp add: a)+ −
done+ −
qed+ −
+ −
lemma U_app:+ −
"\<guillemotleft>[A,B,C]\<guillemotright> \<cdot> Umn 2 2 \<approx> A" "\<guillemotleft>[A,B,C]\<guillemotright> \<cdot> Umn 2 1 \<approx> B" "\<guillemotleft>[A,B,C]\<guillemotright> \<cdot> Umn 2 0 \<approx> C"+ −
by (rule b3, rule Ltgt3_app, rule lam3_fast_app, rule Lam_U, simp_all)+ −
(rule b3, rule Ltgt3_app, rule lam3_fast_app, rule Lam_U[simplified], simp_all)++ −
+ −
definition "F1 \<equiv> \<integral>cx. (App \<cdot> \<lbrace>Var\<rbrace> \<cdot> (Var \<cdot> V cx))"+ −
definition "F2 \<equiv> \<integral>cx. \<integral>cy. \<integral>cz. ((App \<cdot> (App \<cdot> \<lbrace>App\<rbrace> \<cdot> (V cz \<cdot> V cx))) \<cdot> (V cz \<cdot> V cy))"+ −
definition "F3 \<equiv> \<integral>cx. \<integral>cy. (App \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> (\<integral>cz. (V cy \<cdot> (V cx \<cdot> V cz)))))"+ −
+ −
+ −
lemma Lam_F:+ −
"F1 = \<integral>x. (App \<cdot> \<lbrace>Var\<rbrace> \<cdot> (Var \<cdot> V x))"+ −
"a \<noteq> b \<Longrightarrow> a \<noteq> c \<Longrightarrow> c \<noteq> b \<Longrightarrow> F2 = \<integral>a. \<integral>b. \<integral>c. ((App \<cdot> (App \<cdot> \<lbrace>App\<rbrace> \<cdot> (V c \<cdot> V a))) \<cdot> (V c \<cdot> V b))"+ −
"a \<noteq> b \<Longrightarrow> a \<noteq> x \<Longrightarrow> x \<noteq> b \<Longrightarrow> F3 = \<integral>a. \<integral>b. (App \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> (\<integral>x. (V b \<cdot> (V a \<cdot> V x)))))"+ −
apply (simp_all add: F1_def F2_def F3_def Abs1_eq_iff lam.fresh supp_at_base Var_App_Abs_eqvt Numeral.eqvt flip_def[symmetric] fresh_at_base)+ −
apply (smt cx_cy_cz permute_flip_at)++ −
done+ −
+ −
lemma supp_F[simp]:+ −
"supp F1 = {}" "supp F2 = {}" "supp F3 = {}"+ −
by (simp_all add: F1_def F2_def F3_def lam.supp supp_at_base)+ −
blast++ −
+ −
lemma F_eqvt[eqvt]:+ −
"p \<bullet> F1 = F1" "p \<bullet> F2 = F2" "p \<bullet> F3 = F3"+ −
by (rule_tac [!] perm_supp_eq)+ −
(simp_all add: fresh_star_def fresh_def)+ −
+ −
lemma F_app:+ −
"F1 \<cdot> A \<approx> App \<cdot> \<lbrace>Var\<rbrace> \<cdot> (Var \<cdot> A)"+ −
"F2 \<cdot> A \<cdot> B \<cdot> C \<approx> (App \<cdot> (App \<cdot> \<lbrace>App\<rbrace> \<cdot> (C \<cdot> A))) \<cdot> (C \<cdot> B)"+ −
by (rule lam1_fast_app, rule Lam_F, simp_all)+ −
(rule lam3_fast_app, rule Lam_F, simp_all)+ −
+ −
lemma F3_app:+ −
assumes f: "atom x \<sharp> A" "atom x \<sharp> B" (* or A and B have empty support *)+ −
shows "F3 \<cdot> A \<cdot> B \<approx> App \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> (\<integral>x. (B \<cdot> (A \<cdot> V x))))"+ −
proof -+ −
obtain y :: var where b: "atom y \<sharp> (x, A, B)" using obtain_fresh by blast+ −
obtain z :: var where c: "atom z \<sharp> (x, y, A, B)" using obtain_fresh by blast+ −
have *: "x \<noteq> z" "x \<noteq> y" "y \<noteq> z"+ −
using b c by (simp_all add: fresh_Pair fresh_at_base) blast++ −
have **:+ −
"atom y \<sharp> z" "atom x \<sharp> z" "atom y \<sharp> x"+ −
"atom z \<sharp> y" "atom z \<sharp> x" "atom x \<sharp> y"+ −
"atom x \<sharp> A" "atom y \<sharp> A" "atom z \<sharp> A"+ −
"atom x \<sharp> B" "atom y \<sharp> B" "atom z \<sharp> B"+ −
using b c f by (simp_all add: fresh_Pair fresh_at_base) blast++ −
show ?thesis+ −
apply (simp add: Lam_F(3)[of y z x] * *[symmetric])+ −
apply (rule b3) apply (rule b5) apply (rule bI)+ −
apply (simp add: ** fresh_Pair * *[symmetric])+ −
apply (rule b3) apply (rule bI)+ −
apply (simp add: ** fresh_Pair * *[symmetric])+ −
apply (rule b1)+ −
done+ −
qed+ −
+ −
definition Lam_A1_pre : "A1 \<equiv> \<integral>cx. \<integral>cy. (F1 \<cdot> V cx)"+ −
definition Lam_A2_pre : "A2 \<equiv> \<integral>cx. \<integral>cy. \<integral>cz. (F2 \<cdot> V cx \<cdot> V cy \<cdot> \<guillemotleft>[V cz]\<guillemotright>)"+ −
definition Lam_A3_pre : "A3 \<equiv> \<integral>cx. \<integral>cy. (F3 \<cdot> V cx \<cdot> \<guillemotleft>[V cy]\<guillemotright>)"+ −
lemma Lam_A:+ −
"x \<noteq> y \<Longrightarrow> A1 = \<integral>x. \<integral>y. (F1 \<cdot> V x)"+ −
"a \<noteq> b \<Longrightarrow> a \<noteq> c \<Longrightarrow> c \<noteq> b \<Longrightarrow> A2 = \<integral>a. \<integral>b. \<integral>c. (F2 \<cdot> V a \<cdot> V b \<cdot> \<guillemotleft>[V c]\<guillemotright>)"+ −
"a \<noteq> b \<Longrightarrow> A3 = \<integral>a. \<integral>b. (F3 \<cdot> V a \<cdot> \<guillemotleft>[V b]\<guillemotright>)"+ −
apply (simp_all add: Lam_A1_pre Lam_A2_pre Lam_A3_pre Abs1_eq_iff lam.fresh supp_at_base Var_App_Abs_eqvt Numeral.eqvt flip_def[symmetric] fresh_at_base F_eqvt Ltgt.eqvt)+ −
apply (smt cx_cy_cz permute_flip_at)++ −
done+ −
+ −
lemma supp_A[simp]:+ −
"supp A1 = {}" "supp A2 = {}" "supp A3 = {}"+ −
by (auto simp add: Lam_A1_pre Lam_A2_pre Lam_A3_pre lam.supp supp_at_base supp_Cons supp_Nil)+ −
+ −
lemma A_app:+ −
"A1 \<cdot> A \<cdot> B \<approx> F1 \<cdot> A"+ −
"A2 \<cdot> A \<cdot> B \<cdot> C \<approx> F2 \<cdot> A \<cdot> B \<cdot> \<guillemotleft>[C]\<guillemotright>"+ −
"A3 \<cdot> A \<cdot> B \<approx> F3 \<cdot> A \<cdot> \<guillemotleft>[B]\<guillemotright>"+ −
apply (rule lam2_fast_app, rule Lam_A, simp_all)+ −
apply (rule lam3_fast_app, rule Lam_A, simp_all)+ −
apply (rule lam2_fast_app, rule Lam_A, simp_all)+ −
done+ −
+ −
definition "Num \<equiv> \<guillemotleft>[\<guillemotleft>[A1,A2,A3]\<guillemotright>]\<guillemotright>"+ −
+ −
lemma supp_Num[simp]:+ −
"supp Num = {}"+ −
by (auto simp only: Num_def supp_ltgt supp_Pair supp_A supp_Cons supp_Nil)+ −
+ −
end+ −