Quot/Nominal/nominal_thmdecls.ML
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Fri, 29 Jan 2010 19:42:07 +0100
changeset 994 333c24bd595d
parent 947 fa810f01f7b5
child 1037 2845e736dc1a
permissions -rw-r--r--
More in the LF example in the new nominal way, all is clear until support.

(*  Title:      HOL/Nominal/nominal_thmdecls.ML
    Author:     Julien Narboux, TU Muenchen
    Author:     Christian Urban, TU Muenchen

Infrastructure for the lemma collection "eqvts".

By attaching [eqvt] or [eqvt_force] to a lemma, it will get stored in
a data-slot in the context. Possible modifiers are [... add] and
[... del] for adding and deleting, respectively, the lemma from the
data-slot.
*)

signature NOMINAL_THMDECLS =
sig
  val eqvt_add: attribute
  val eqvt_del: attribute
  val eqvt_force_add: attribute
  val eqvt_force_del: attribute
  val setup: theory -> theory
  val get_eqvt_thms: Proof.context -> thm list

end;

structure NominalThmDecls: NOMINAL_THMDECLS =
struct

structure Data = Generic_Data
(
  type T = thm list
  val empty = []
  val extend = I
  val merge = Thm.merge_thms
)

(* Exception for when a theorem does not conform with form of an equivariance lemma. *)
(* There are two forms: one is an implication (for relations) and the other is an    *)
(* equality (for functions). In the implication-case, say P ==> Q, Q must be equal   *)
(* to P except that every free variable of Q, say x, is replaced by pi o x. In the   *)
(* equality case, say lhs = rhs, the lhs must be of the form pi o t and the rhs must *)
(* be equal to t except that every free variable, say x, is replaced by pi o x. In   *)
(* the implicational case it is also checked that the variables and permutation fit  *)
(* together, i.e. are of the right "pt_class", so that a stronger version of the     *)
(* equality-lemma can be derived. *)
exception EQVT_FORM of string

val perm_boolE =
  @{lemma "pi \<bullet> P ==> P" by (simp add: permute_bool_def)};

val perm_boolI =
  @{lemma "P ==> pi \<bullet> P" by (simp add: permute_bool_def)};

fun prove_eqvt_tac ctxt orig_thm pi pi' =
let
  val mypi = Thm.cterm_of ctxt pi
  val T = fastype_of pi'
  val mypifree = Thm.cterm_of ctxt (Const (@{const_name "uminus"}, T --> T) $ pi')
  val perm_pi_simp = @{thms permute_minus_cancel}
in
  EVERY1 [rtac @{thm iffI},
          dtac perm_boolE,
          etac orig_thm,
          dtac (Drule.cterm_instantiate [(mypi, mypifree)] orig_thm),
          rtac perm_boolI,
          full_simp_tac (HOL_basic_ss addsimps perm_pi_simp)]
end;

fun get_derived_thm ctxt hyp concl orig_thm pi =
  let
    val thy = ProofContext.theory_of ctxt;
    val pi' = Var (pi, @{typ "perm"});
    val lhs = Const (@{const_name "permute"}, @{typ "perm"} --> HOLogic.boolT --> HOLogic.boolT) $ pi' $ hyp;
    val ([goal_term, pi''], ctxt') = Variable.import_terms false
      [HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, concl)), pi'] ctxt
  in
    Goal.prove ctxt' [] [] goal_term
      (fn _ => prove_eqvt_tac thy orig_thm pi' pi'') |>
    singleton (ProofContext.export ctxt' ctxt)
  end

(* replaces in t every variable, say x, with pi o x *)
fun apply_pi trm pi =
let
  fun replace n ty =
  let 
    val c  = Const (@{const_name "permute"}, @{typ "perm"} --> ty --> ty) 
    val v1 = Var (pi, @{typ "perm"})
    val v2 = Var (n, ty)
  in
    c $ v1 $ v2 
  end
in
  map_aterms (fn Var (n, ty) => replace n ty | t => t) trm
end

(* returns *the* pi which is in front of all variables, provided there *)
(* exists such a pi; otherwise raises EQVT_FORM                        *)
fun get_pi t thy =
  let fun get_pi_aux s =
        (case s of
          (Const (@{const_name "permute"} ,typrm) $
             (Var (pi,_)) $
               (Var (n,ty))) =>
                if (Sign.of_sort thy (ty, @{sort pt}))
                then [pi]
                else raise
                EQVT_FORM ("Could not find any permutation or an argument is not an instance of pt")
        | Abs (_,_,t1) => get_pi_aux t1
        | (t1 $ t2) => get_pi_aux t1 @ get_pi_aux t2
        | _ => [])
  in
    (* collect first all pi's in front of variables in t and then use distinct *)
    (* to ensure that all pi's must have been the same, i.e. distinct returns  *)
    (* a singleton-list  *)
    (case (distinct (op =) (get_pi_aux t)) of
      [pi] => pi
    | [] => raise EQVT_FORM "No permutations found"
    | _ => raise EQVT_FORM "All permutation should be the same")
  end;

(* Either adds a theorem (orig_thm) to or deletes one from the equivariance *)
(* lemma list depending on flag. To be added the lemma has to satisfy a     *)
(* certain form. *)

fun eqvt_add_del_aux flag orig_thm context = 
  let
    val thy = Context.theory_of context
    val thms_to_be_added = (case (prop_of orig_thm) of
        (* case: eqvt-lemma is of the implicational form *)
        (Const("==>", _) $ (Const ("Trueprop",_) $ hyp) $ (Const ("Trueprop",_) $ concl)) =>
          let
            val pi = get_pi concl thy
          in
             if (apply_pi hyp pi = concl)
             then
               (warning ("equivariance lemma of the relational form");
                [orig_thm,
                 get_derived_thm (Context.proof_of context) hyp concl orig_thm pi])
             else raise EQVT_FORM "Type Implication"
          end
       (* case: eqvt-lemma is of the equational form *)
      | (Const (@{const_name "Trueprop"}, _) $ (Const (@{const_name "op ="}, _) $
            (Const (@{const_name "permute"},typrm) $ Var (pi, _) $ lhs) $ rhs)) =>
           (if (apply_pi lhs pi) = rhs
               then [orig_thm]
               else raise EQVT_FORM "Type Equality")
      | _ => raise EQVT_FORM "Type unknown")
  in
      fold (fn thm => Data.map (flag thm)) thms_to_be_added context
  end
  handle EQVT_FORM s =>
      error (Display.string_of_thm (Context.proof_of context) orig_thm ^ 
               " does not comply with the form of an equivariance lemma (" ^ s ^").")


val eqvt_add = Thm.declaration_attribute (eqvt_add_del_aux (Thm.add_thm));
val eqvt_del = Thm.declaration_attribute (eqvt_add_del_aux (Thm.del_thm));

val eqvt_force_add  = Thm.declaration_attribute (Data.map o Thm.add_thm);
val eqvt_force_del  = Thm.declaration_attribute (Data.map o Thm.del_thm);

val get_eqvt_thms = Context.Proof #> Data.get;

val setup =
    Attrib.setup @{binding eqvt} (Attrib.add_del eqvt_add eqvt_del) 
     "equivariance theorem declaration" 
 #> Attrib.setup @{binding eqvt_force} (Attrib.add_del eqvt_force_add eqvt_force_del)
     "equivariance theorem declaration (without checking the form of the lemma)" 
 #> PureThy.add_thms_dynamic (Binding.name "eqvts", Data.get) 


end;