FSet.thy
author Christian Urban <urbanc@in.tum.de>
Sat, 21 Nov 2009 03:12:50 +0100
changeset 323 31509c8cf72e
parent 317 d3c7f6d19c7f
child 332 87f5fbebd6d5
permissions -rw-r--r--
tuned

theory FSet
imports QuotMain
begin

inductive
  list_eq (infix "\<approx>" 50)
where
  "a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"

lemma list_eq_refl:
  shows "xs \<approx> xs"
  apply (induct xs)
   apply (auto intro: list_eq.intros)
  done

lemma equiv_list_eq:
  shows "EQUIV list_eq"
  unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
  apply(auto intro: list_eq.intros list_eq_refl)
  done

quotient fset = "'a list" / "list_eq"
  apply(rule equiv_list_eq)
  done

print_theorems

typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"

quotient_def 
  EMPTY :: "'a fset"
where
  "EMPTY \<equiv> ([]::'a list)"

term Nil
term EMPTY
thm EMPTY_def

quotient_def 
  INSERT :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
  "INSERT \<equiv> op #"

term Cons
term INSERT
thm INSERT_def

quotient_def 
  FUNION :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
  "FUNION \<equiv> (op @)"

term append
term FUNION
thm FUNION_def

thm QUOTIENT_fset

thm QUOT_TYPE_I_fset.thm11


fun
  membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
  m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"

fun
  card1 :: "'a list \<Rightarrow> nat"
where
  card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"

quotient_def 
  CARD :: "'a fset \<Rightarrow> nat"
where
  "CARD \<equiv> card1"

term card1
term CARD
thm CARD_def

(* text {*
 Maybe make_const_def should require a theorem that says that the particular lifted function
 respects the relation. With it such a definition would be impossible:
 make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)

lemma card1_0:
  fixes a :: "'a list"
  shows "(card1 a = 0) = (a = [])"
  by (induct a) auto

lemma not_mem_card1:
  fixes x :: "'a"
  fixes xs :: "'a list"
  shows "(~(x memb xs)) = (card1 (x # xs) = Suc (card1 xs))"
  by auto

lemma mem_cons:
  fixes x :: "'a"
  fixes xs :: "'a list"
  assumes a : "x memb xs"
  shows "x # xs \<approx> xs"
  using a by (induct xs) (auto intro: list_eq.intros )

lemma card1_suc:
  fixes xs :: "'a list"
  fixes n :: "nat"
  assumes c: "card1 xs = Suc n"
  shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
  using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done

definition
  rsp_fold
where
  "rsp_fold f = ((!u v. (f u v = f v u)) \<and> (!u v w. ((f u (f v w) = f (f u v) w))))"

primrec
  fold1
where
  "fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
     (if rsp_fold f
     then (
       if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
     ) else z)"

(* fold1_def is not usable, but: *)
thm fold1.simps

lemma fs1_strong_cases:
  fixes X :: "'a list"
  shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
  apply (induct X)
  apply (simp)
  apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
  done

quotient_def
  IN :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool"
where
  "IN \<equiv> membship"

term membship
term IN
thm IN_def

term fold1
quotient_def 
  FOLD :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
  "FOLD \<equiv> fold1"

term fold1
term fold
thm fold_def

quotient_def 
  fmap::"('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
where
  "fmap \<equiv> map"

term map
term fmap
thm fmap_def

ML {* prop_of @{thm fmap_def} *}

ML {* val defs = @{thms EMPTY_def IN_def FUNION_def CARD_def INSERT_def fmap_def FOLD_def} *}

lemma memb_rsp:
  fixes z
  assumes a: "list_eq x y"
  shows "(z memb x) = (z memb y)"
  using a by induct auto

lemma ho_memb_rsp:
  "(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
  by (simp add: memb_rsp)

lemma card1_rsp:
  fixes a b :: "'a list"
  assumes e: "a \<approx> b"
  shows "card1 a = card1 b"
  using e by induct (simp_all add:memb_rsp)

lemma ho_card1_rsp: "(op \<approx> ===> op =) card1 card1"
  by (simp add: card1_rsp)

lemma cons_rsp:
  fixes z
  assumes a: "xs \<approx> ys"
  shows "(z # xs) \<approx> (z # ys)"
  using a by (rule list_eq.intros(5))

lemma ho_cons_rsp:
  "(op = ===> op \<approx> ===> op \<approx>) op # op #"
  by (simp add: cons_rsp)

lemma append_rsp_fst:
  assumes a : "list_eq l1 l2"
  shows "(l1 @ s) \<approx> (l2 @ s)"
  using a
  by (induct) (auto intro: list_eq.intros list_eq_refl)

lemma append_end:
  shows "(e # l) \<approx> (l @ [e])"
  apply (induct l)
  apply (auto intro: list_eq.intros list_eq_refl)
  done

lemma rev_rsp:
  shows "a \<approx> rev a"
  apply (induct a)
  apply simp
  apply (rule list_eq_refl)
  apply simp_all
  apply (rule list_eq.intros(6))
  prefer 2
  apply (rule append_rsp_fst)
  apply assumption
  apply (rule append_end)
  done

lemma append_sym_rsp:
  shows "(a @ b) \<approx> (b @ a)"
  apply (rule list_eq.intros(6))
  apply (rule append_rsp_fst)
  apply (rule rev_rsp)
  apply (rule list_eq.intros(6))
  apply (rule rev_rsp)
  apply (simp)
  apply (rule append_rsp_fst)
  apply (rule list_eq.intros(3))
  apply (rule rev_rsp)
  done

lemma append_rsp:
  assumes a : "list_eq l1 r1"
  assumes b : "list_eq l2 r2 "
  shows "(l1 @ l2) \<approx> (r1 @ r2)"
  apply (rule list_eq.intros(6))
  apply (rule append_rsp_fst)
  using a apply (assumption)
  apply (rule list_eq.intros(6))
  apply (rule append_sym_rsp)
  apply (rule list_eq.intros(6))
  apply (rule append_rsp_fst)
  using b apply (assumption)
  apply (rule append_sym_rsp)
  done

lemma ho_append_rsp:
  "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
  by (simp add: append_rsp)

lemma map_rsp:
  assumes a: "a \<approx> b"
  shows "map f a \<approx> map f b"
  using a
  apply (induct)
  apply(auto intro: list_eq.intros)
  done

lemma ho_map_rsp:
  "(op = ===> op \<approx> ===> op \<approx>) map map"
  by (simp add: map_rsp)

lemma map_append:
  "(map f (a @ b)) \<approx>
  (map f a) @ (map f b)"
 by simp (rule list_eq_refl)

lemma ho_fold_rsp:
  "(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
  apply (auto simp add: FUN_REL_EQ)
  apply (case_tac "rsp_fold x")
  prefer 2
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  apply (auto simp add: memb_rsp rsp_fold_def)
done

print_quotients


ML {* val qty = @{typ "'a fset"} *}
ML {* val rsp_thms =
  @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp ho_fold_rsp}
  @ @{thms ho_all_prs ho_ex_prs} *}

ML {* fun lift_thm_fset lthy t = lift_thm lthy qty "fset" rsp_thms defs t *}

thm m2

thm neq_Nil_conv
term REP_fset
term "op --->"
thm INSERT_def
ML {* val defs_sym = flat (map (add_lower_defs @{context}) @{thms INSERT_def}) *}
(*ML {* lift_thm_fset @{context} @{thm neq_Nil_conv} *}*)
ML {* lift_thm_fset @{context} @{thm m1} *}
ML {* lift_thm_fset @{context} @{thm m2} *}
ML {* lift_thm_fset @{context} @{thm list_eq.intros(4)} *}
ML {* lift_thm_fset @{context} @{thm list_eq.intros(5)} *}
ML {* lift_thm_fset @{context} @{thm card1_suc} *}
ML {* lift_thm_fset @{context} @{thm map_append} *}
ML {* lift_thm_fset @{context} @{thm append_assoc} *}
ML {* lift_thm_fset @{context} @{thm list.induct} *}
ML {* lift_thm_fset @{context} @{thm fold1.simps(2)} *}
ML {* lift_thm_fset @{context} @{thm not_mem_card1} *}

quotient_def
  fset_rec::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
  "fset_rec \<equiv> list_rec"

quotient_def
  fset_case::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
  "fset_case \<equiv> list_case"

(* Probably not true without additional assumptions about the function *)
lemma list_rec_rsp:
  "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
  apply (auto simp add: FUN_REL_EQ)
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  sorry

lemma list_case_rsp:
  "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
  apply (auto simp add: FUN_REL_EQ)
  sorry


ML {* val rsp_thms = @{thms list_rec_rsp list_case_rsp} @ rsp_thms *}
ML {* val defs = @{thms fset_rec_def fset_case_def} @ defs *}

ML {* fun lift_thm_fset lthy t = lift_thm lthy qty "fset" rsp_thms defs t *}


ML {* map (lift_thm_fset @{context}) @{thms list.recs} *}
ML {* map (lift_thm_fset @{context}) @{thms list.cases} *}

lemma list_induct_part:
  assumes a: "P (x :: 'a list) ([] :: 'a list)"
  assumes b: "\<And>e t. P x t \<Longrightarrow> P x (e # t)"
  shows "P x l"
  apply (rule_tac P="P x" in list.induct)
  apply (rule a)
  apply (rule b)
  apply (assumption)
  done


(* Construction site starts here *)


ML {* val consts = lookup_quot_consts defs *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset" *}

thm list.recs(2)
ML {* val t_a = atomize_thm @{thm list_induct_part} *}
(* prove {* build_regularize_goal t_a rty rel @{context}  *}
 ML_prf {*  fun tac ctxt = FIRST' [
      rtac rel_refl,
      atac,
      rtac @{thm universal_twice},
      (rtac @{thm impI} THEN' atac),
      rtac @{thm implication_twice},
      (*rtac @{thm equality_twice},*)
      EqSubst.eqsubst_tac ctxt [0]
        [(@{thm equiv_res_forall} OF [rel_eqv]),
         (@{thm equiv_res_exists} OF [rel_eqv])],
      (rtac @{thm impI} THEN' (asm_full_simp_tac (Simplifier.context ctxt HOL_ss)) THEN' rtac rel_refl),
      (rtac @{thm RIGHT_RES_FORALL_REGULAR})
     ]; *}
  apply (atomize(full))
  apply (tactic {* REPEAT_ALL_NEW (tac @{context}) 1 *})
  done*)
ML {* val t_r = regularize t_a rty rel rel_eqv rel_refl @{context} *}
ML {*
  val rt = build_repabs_term @{context} t_r consts rty qty
  val rg = Logic.mk_equals ((Thm.prop_of t_r), rt);
*}
prove {* Syntax.check_term @{context} rg *}
ML_prf {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac lthy rty quot rel_refl trans2 rsp_thms *}
apply(atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done
ML {*
val t_t = repabs @{context} t_r consts rty qty quot rel_refl trans2 rsp_thms
*}

ML {* val abs = findabs rty (prop_of (t_a)) *}
ML {* val aps = findaps rty (prop_of (t_a)) *}
ML {* val lam_prs_thms = map (make_simp_prs_thm @{context} quot @{thm LAMBDA_PRS}) abs *}
ML {* val app_prs_thms = map (applic_prs @{context} rty qty absrep) aps *}
ML {* val lam_prs_thms = map Thm.varifyT lam_prs_thms *}
ML {* t_t *}
ML {* val (alls, exs) = findallex @{context} rty qty (prop_of t_a); *}
ML {* val allthms = map (make_allex_prs_thm @{context} quot @{thm FORALL_PRS}) alls *}
ML {* val t_l0 = repeat_eqsubst_thm @{context} (app_prs_thms) t_t *}
ML app_prs_thms
ML {* val t_l = repeat_eqsubst_thm @{context} (lam_prs_thms) t_l0 *}
ML lam_prs_thms
ML {* val t_id = simp_ids @{context} t_l *}
thm INSERT_def
ML {* val defs_sym = flat (map (add_lower_defs @{context}) defs) *}
ML {* val t_d = repeat_eqsubst_thm @{context} defs_sym t_id *}
ML allthms
thm FORALL_PRS
ML {* val t_al = MetaSimplifier.rewrite_rule (allthms) t_d *}
ML {* val t_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} t_al *}
ML {* ObjectLogic.rulify t_s *}

ML {* Type.freeze *}

ML {* val gl = @{term "P (x :: 'a list) (EMPTY :: 'a fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"} *}
ML {* val vars = map Free (Term.add_frees gl []) *}
ML {* fun lambda_all (var as Free(_, T)) trm = (Term.all T) $ lambda var trm *}
ML {* val gla = fold lambda_all vars gl *}
ML {* val glf = Type.freeze gla *}
ML {* val glac = (snd o Thm.dest_equals o cprop_of) (ObjectLogic.atomize (cterm_of @{theory} glf)) *}

ML {*
fun apply_subt2 f trm trm2 =
  case (trm, trm2) of
    (Abs (x, T, t), Abs (x2, T2, t2)) =>
       let
         val (x', t') = Term.dest_abs (x, T, t);
         val (x2', t2') = Term.dest_abs (x2, T2, t2)
         val (s1, s2) = f t' t2';
       in
         (Term.absfree (x', T, s1),
          Term.absfree (x2', T2, s2))
       end
  | _ => f trm trm2
*}

(*ML_prf {*
val concl = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ()))))
val pat = Drule.strip_imp_concl (cprop_of @{thm APPLY_RSP2})
val insts = Thm.first_order_match (pat, concl)
val t = Drule.instantiate insts @{thm APPLY_RSP2}
*}*)

ML {*
fun tyRel2 lthy ty gty =
  if ty = gty then HOLogic.eq_const ty else

  case quotdata_lookup lthy (fst (dest_Type gty)) of
    SOME quotdata =>
      if Sign.typ_instance (ProofContext.theory_of lthy) (ty, #rtyp quotdata) then
        case #rel quotdata of
          Const(s, _) => Const(s, dummyT)
        | _ => error "tyRel2 fail: relation is not a constant"
      else error "tyRel2 fail: a non-lifted type lifted to a lifted type"
  | NONE => (case (ty, gty) of
      (Type (s, tys), Type (s2, tys2)) =>
      if s = s2 andalso length tys = length tys2 then
        let
          val tys_rel = map (fn ty => ty --> ty --> @{typ bool}) tys;
          val ty_out = ty --> ty --> @{typ bool};
          val tys_out = tys_rel ---> ty_out;
        in
        (case (maps_lookup (ProofContext.theory_of lthy) s) of
          SOME (info) => list_comb (Const (#relfun info, tys_out),
                              map2 (tyRel2 lthy) tys tys2)
        | NONE  => HOLogic.eq_const ty
        )
        end
      else error "tyRel2 fail: different type structures"
    | _ => HOLogic.eq_const ty)
*}

ML {*
fun my_reg2 lthy trm gtrm =
  case (trm, gtrm) of
    (Abs (x, T, t), Abs (x2, T2, t2)) =>
       if not (T = T2) then
         let
           val rrel = tyRel2 lthy T T2;
           val (s1, s2) = apply_subt2 (my_reg2 lthy) trm gtrm
         in
           (((mk_babs (fastype_of trm) T) $ (mk_resp T $ rrel) $ s1),
           ((mk_babs (fastype_of gtrm) T2) $ (mk_resp T2 $ (HOLogic.eq_const dummyT)) $ s2))
         end
       else
         let
           val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2
         in
           (Abs(x, T, s1), Abs(x2, T2, s2))
         end
  | (Const (@{const_name "All"}, ty) $ (t as Abs (_, T, _)),
     Const (@{const_name "All"}, ty') $ (t2 as Abs (_, T2, _))) =>
       if not (T = T2) then
         let
            val ty1 = domain_type ty;
            val ty2 = domain_type ty1;
            val ty'1 = domain_type ty';
            val ty'2 = domain_type ty'1;
            val rrel = tyRel2 lthy T T2;
            val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2;
         in
           (((mk_ball ty1) $ (mk_resp ty2 $ rrel) $ s1),
           ((mk_ball ty'1) $ (mk_resp ty'2 $ (HOLogic.eq_const dummyT)) $ s2))
         end
       else
         let
           val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2
         in
           ((Const (@{const_name "All"}, ty) $ s1),
           (Const (@{const_name "All"}, ty') $ s2))
         end
  | (Const (@{const_name "Ex"}, ty) $ (t as Abs (_, T, _)),
     Const (@{const_name "Ex"}, ty') $ (t2 as Abs (_, T2, _))) =>
       if not (T = T2) then
         let
            val ty1 = domain_type ty
            val ty2 = domain_type ty1
            val ty'1 = domain_type ty'
            val ty'2 = domain_type ty'1
            val rrel = tyRel2 lthy T T2
            val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2
         in
           (((mk_bex ty1) $ (mk_resp ty2 $ rrel) $ s1),
           ((mk_bex ty'1) $ (mk_resp ty'2 $ (HOLogic.eq_const dummyT)) $ s2))
         end
       else
         let
           val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2
         in
           ((Const (@{const_name "Ex"}, ty) $ s1),
           (Const (@{const_name "Ex"}, ty') $ s2))
         end
  | (Const (@{const_name "op ="}, T) $ t, (Const (@{const_name "op ="}, T2) $ t2)) =>
      let
        val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2
        val rhs = Const (@{const_name "op ="}, T2) $ s2
      in
        if not (T = T2) then
          ((tyRel2 lthy T T2) $ s1, rhs)
        else
          (Const (@{const_name "op ="}, T) $ s1, rhs)
      end
  | (t $ t', t2 $ t2') =>
      let
        val (s1, s2) = apply_subt2 (my_reg2 lthy) t t2
        val (s1', s2') = apply_subt2 (my_reg2 lthy) t' t2'
      in
        (s1 $ s1', s2 $ s2')
      end
  | (Const c1, Const c2) => (Const c1, Const c2) (* c2 may be lifted *)
  | (Bound i, Bound j) => (* Bounds are replaced, so should never happen? *)
      if i = j then (Bound i, Bound j) else error "my_reg2: different Bounds"
  | (Free (n, T), Free(n2, T2)) => if n = n2 then (Free (n, T), Free (n2, T2))
      else error ("my_ref2: different variables: " ^ n ^ ", " ^ n2)
  | _ => error "my_reg2: terms don't agree"
*}


ML {* prop_of t_a *}
ML {* term_of glac *}
ML {* val (tta, ttb) = (my_reg2 @{context} (prop_of t_a) (term_of glac)) *}
ML {* val tt = Syntax.check_term @{context} tta *}

prove t_r: {* Logic.mk_implies
       ((prop_of t_a), tt) *}
ML_prf {*  fun tac ctxt = FIRST' [
      rtac rel_refl,
      atac,
      rtac @{thm universal_twice},
      (rtac @{thm impI} THEN' atac),
      rtac @{thm implication_twice},
      (*rtac @{thm equality_twice},*)
      EqSubst.eqsubst_tac ctxt [0]
        [(@{thm equiv_res_forall} OF [rel_eqv]),
         (@{thm equiv_res_exists} OF [rel_eqv])],
      (rtac @{thm impI} THEN' (asm_full_simp_tac (Simplifier.context ctxt HOL_ss)) THEN' rtac rel_refl),
      (rtac @{thm RIGHT_RES_FORALL_REGULAR})
     ]; *}

  apply (atomize(full))
  apply (tactic {* REPEAT_ALL_NEW (tac @{context}) 1 *})
  done

ML {* val t_r = @{thm t_r} OF [t_a] *}

ML {* val ttg = Syntax.check_term @{context} ttb *}

ML {*
fun is_lifted_const h gh = is_Const h andalso is_Const gh andalso not (h = gh)

fun mkrepabs lthy ty gty t =
  let
    val qenv = distinct (op=) (diff (gty, ty) [])
(*  val _ = sanity_chk qenv lthy *)
    val ty = fastype_of t
    val abs = get_fun absF qenv lthy gty $ t
    val rep = get_fun repF qenv lthy gty $ abs
  in
    Syntax.check_term lthy rep
  end
*}

ML {*
  cterm_of @{theory} (mkrepabs @{context} @{typ "'a list \<Rightarrow> bool"} @{typ "'a fset \<Rightarrow> bool"} @{term "f :: ('a list \<Rightarrow> bool)"})
*}



ML {*
fun build_repabs_term lthy trm gtrm =
  case (trm, gtrm) of
    (Abs (a as (_, T, _)), Abs (a2 as (_, T2, _))) =>
      let
        val (vs, t) = Term.dest_abs a;
        val (_,  g) = Term.dest_abs a2;
        val v = Free(vs, T);
        val t' = lambda v (build_repabs_term lthy t g);
        val ty = fastype_of trm;
        val gty = fastype_of gtrm;
      in
        if (ty = gty) then t' else
        mkrepabs lthy ty gty (
          if (T = T2) then t' else
          lambda v (t' $ (mkrepabs lthy T T2 v))
        )
      end
  | _ =>
    case (Term.strip_comb trm, Term.strip_comb gtrm) of
      ((Const(@{const_name Respects}, _), _), _) => trm
    | ((h, tms), (gh, gtms)) =>
      let
        val ty = fastype_of trm;
        val gty = fastype_of gtrm;
        val tms' = map2 (build_repabs_term lthy) tms gtms
        val t' = list_comb(h, tms')
      in
        if ty = gty then t' else
        if is_lifted_const h gh then mkrepabs lthy ty gty t' else
        if (Term.is_Free h) andalso (length tms > 0) then mkrepabs lthy ty gty t' else t'
      end
*}

ML {* val ttt = build_repabs_term @{context} tt ttg *}
ML {* val si = simp_ids_trm (cterm_of @{theory} ttt) *}
prove t_t: {* Logic.mk_equals ((Thm.prop_of t_r), term_of si) *}
ML_prf {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac lthy rty quot rel_refl trans2 rsp_thms *}
apply(atomize(full))
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule FUN_QUOTIENT)
apply (rule FUN_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (rule FUN_QUOTIENT)
apply (rule QUOTIENT_fset)
apply (rule IDENTITY_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule IDENTITY_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule IDENTITY_QUOTIENT)
apply (rule FUN_QUOTIENT)
apply (rule QUOTIENT_fset)
apply (rule IDENTITY_QUOTIENT)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* (instantiate_tac @{thm REP_ABS_RSP(1)} @{context} THEN' (RANGE [quotient_tac quot])) 1 *})
apply assumption
apply (rule refl)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* (instantiate_tac @{thm REP_ABS_RSP(1)} @{context} THEN' (RANGE [quotient_tac quot])) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* (instantiate_tac @{thm REP_ABS_RSP(1)} @{context} THEN' (RANGE [quotient_tac quot])) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
done

thm t_t
ML {* val t_t = @{thm Pure.equal_elim_rule1} OF [@{thm t_t}, t_r] *}
ML {* val t_l = repeat_eqsubst_thm @{context} (lam_prs_thms) t_t *}
ML {* val t_d = repeat_eqsubst_thm @{context} defs_sym t_l *}
ML {* val t_al = MetaSimplifier.rewrite_rule (allthms) t_d *}
ML {* val t_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} t_al *}


ML {*
  fun lift_thm_fset_note name thm lthy =
    let
      val lifted_thm = lift_thm_fset lthy thm;
      val (_, lthy2) = note (name, lifted_thm) lthy;
    in
      lthy2
    end;
*}

local_setup {*
  lift_thm_fset_note @{binding "m1l"} @{thm m1} #>
  lift_thm_fset_note @{binding "m2l"} @{thm m2} #>
  lift_thm_fset_note @{binding "leqi4l"} @{thm list_eq.intros(4)} #>
  lift_thm_fset_note @{binding "leqi5l"} @{thm list_eq.intros(5)}
*}
thm m1l
thm m2l
thm leqi4l
thm leqi5l

end