theory IntEx
imports "../QuotProd" "../QuotList"
begin
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient my_int = "nat \<times> nat" / intrel
apply(unfold equivp_def)
apply(auto simp add: mem_def expand_fun_eq)
done
thm quot_equiv
thm quot_thm
thm my_int_equivp
print_theorems
print_quotients
quotient_def
"ZERO :: my_int"
as
"(0::nat, 0::nat)"
quotient_def
"ONE :: my_int"
as
"(1::nat, 0::nat)"
fun
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_plus (x, y) (u, v) = (x + u, y + v)"
quotient_def
"PLUS :: my_int \<Rightarrow> my_int \<Rightarrow> my_int"
as
"my_plus"
fun
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_neg (x, y) = (y, x)"
quotient_def
"NEG :: my_int \<Rightarrow> my_int"
as
"my_neg"
definition
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MINUS z w = PLUS z (NEG w)"
fun
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
quotient_def
"MULT :: my_int \<Rightarrow> my_int \<Rightarrow> my_int"
as
"my_mult"
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"my_le (x, y) (u, v) = (x+v \<le> u+y)"
quotient_def
"LE :: my_int \<Rightarrow> my_int \<Rightarrow> bool"
as
"my_le"
term LE
thm LE_def
definition
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LESS z w = (LE z w \<and> z \<noteq> w)"
term LESS
thm LESS_def
definition
ABS :: "my_int \<Rightarrow> my_int"
where
"ABS i = (if (LESS i ZERO) then (NEG i) else i)"
definition
SIGN :: "my_int \<Rightarrow> my_int"
where
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"
ML {* print_qconstinfo @{context} *}
lemma plus_sym_pre:
shows "my_plus a b \<approx> my_plus b a"
apply(cases a)
apply(cases b)
apply(auto)
done
lemma plus_rsp[quot_respect]:
shows "(intrel ===> intrel ===> intrel) my_plus my_plus"
by (simp)
lemma neg_rsp[quot_respect]:
shows "(op \<approx> ===> op \<approx>) my_neg my_neg"
by simp
lemma test1: "my_plus a b = my_plus a b"
apply(rule refl)
done
lemma "PLUS a b = PLUS a b"
apply(lifting_setup test1)
apply(regularize)
apply(injection)
apply(cleaning)
done
thm lambda_prs
lemma test2: "my_plus a = my_plus a"
apply(rule refl)
done
lemma "PLUS a = PLUS a"
apply(lifting_setup test2)
apply(rule impI)
apply(rule ballI)
apply(rule apply_rsp[OF Quotient_my_int plus_rsp])
apply(simp only: in_respects)
apply(injection)
apply(cleaning)
done
lemma test3: "my_plus = my_plus"
apply(rule refl)
done
lemma "PLUS = PLUS"
apply(lifting_setup test3)
apply(rule impI)
apply(rule plus_rsp)
apply(injection)
apply(cleaning)
done
lemma "PLUS a b = PLUS b a"
apply(lifting plus_sym_pre)
done
lemma plus_assoc_pre:
shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
apply (cases i)
apply (cases j)
apply (cases k)
apply (simp)
done
lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
apply(lifting plus_assoc_pre)
done
lemma int_induct_raw:
assumes a: "P (0::nat, 0)"
and b: "\<And>i. P i \<Longrightarrow> P (my_plus i (1,0))"
and c: "\<And>i. P i \<Longrightarrow> P (my_plus i (my_neg (1,0)))"
shows "P x"
apply(case_tac x) apply(simp)
apply(rule_tac x="b" in spec)
apply(rule_tac Nat.induct)
apply(rule allI)
apply(rule_tac Nat.induct)
using a b c apply(auto)
done
lemma int_induct:
assumes a: "P ZERO"
and b: "\<And>i. P i \<Longrightarrow> P (PLUS i ONE)"
and c: "\<And>i. P i \<Longrightarrow> P (PLUS i (NEG ONE))"
shows "P x"
using a b c
by (lifting int_induct_raw)
lemma ho_tst: "foldl my_plus x [] = x"
apply simp
done
lemma "foldl PLUS x [] = x"
apply(lifting ho_tst)
done
lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)"
sorry
lemma "foldl PLUS x (h # t) = PLUS h (foldl PLUS x t)"
apply(lifting ho_tst2)
done
lemma ho_tst3: "foldl f (s::nat \<times> nat) ([]::(nat \<times> nat) list) = s"
by simp
lemma "foldl f (x::my_int) ([]::my_int list) = x"
apply(lifting ho_tst3)
done
lemma lam_tst: "(\<lambda>x. (x, x)) y = (y, (y :: nat \<times> nat))"
by simp
(* Don't know how to keep the goal non-contracted... *)
lemma "(\<lambda>x. (x, x)) (y::my_int) = (y, y)"
apply(lifting lam_tst)
done
lemma lam_tst2: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)"
by simp
lemma
shows "equivp (op \<approx>)"
and "equivp ((op \<approx>) ===> (op \<approx>))"
(* Nitpick finds a counterexample! *)
oops
lemma lam_tst3a: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)"
by auto
lemma id_rsp:
shows "(R ===> R) id id"
by simp
lemma lam_tst3a_reg: "(op \<approx> ===> op \<approx>) (Babs (Respects op \<approx>) (\<lambda>y. y)) (Babs (Respects op \<approx>) (\<lambda>x. x))"
apply (rule babs_rsp[OF Quotient_my_int])
apply (simp add: id_rsp)
done
lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
apply(lifting lam_tst3a)
apply(rule impI)
apply(rule lam_tst3a_reg)
done
lemma lam_tst3b: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)"
by auto
lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)"
apply(lifting lam_tst3b)
apply(rule impI)
apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]])
apply(simp add: id_rsp)
done
term map
lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l"
apply (induct l)
apply simp
apply (case_tac a)
apply simp
done
lemma "map (\<lambda>x. PLUS x ZERO) l = l"
apply(lifting lam_tst4)
done
end