Nominal/Ex/SingleLetFoo.thy
author Christian Urban <urbanc@in.tum.de>
Sun, 29 Aug 2010 12:17:25 +0800
changeset 2453 2f47291b6ff9
parent 2136 2fc55508a6d0
permissions -rw-r--r--
tuned

theory SingleLetFoo
imports "../NewParser"
begin


declare [[STEPS = 5]]

atom_decl name

nominal_datatype trm =
  Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm"  bind_set x in t
| Let a::"assg" t::"trm"  bind_set "bn a" in t
| Foo1 a1::"assg" a2::"assg" t::"trm" bind_set "bn a1" "bn a2" in t
| Foo2 x::name a::"assg" t::"trm" bind_set x "bn a" in t

and assg =
  As "name" "trm"
binder
  bn::"assg \<Rightarrow> atom set"
where
  "bn (As x t) = {atom x}"

thm trm_assg.distinct
thm trm_assg.eq_iff
thm trm_assg.supp
thm trm_assg.perm
thm trm_assg.fv[simplified trm_assg.supp(1-2),no_vars]

thm permute_trm_raw_permute_assg_raw.simps
thm fv_trm_raw.simps fv_assg_raw.simps fv_bn_raw.simps[no_vars]

thm alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros[no_vars]


lemmas all = alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros

lemma test: "p \<bullet> bn_raw \<equiv> bn_raw" sorry

lemma
  assumes "distinct [x,y, z, u]"
  shows "alpha_trm_raw (Foo2_raw z (As_raw x (Var_raw z)) (Var_raw z))
                       (Foo2_raw u (As_raw y (Var_raw z)) (Var_raw u))"
using assms
apply(rule_tac all)
apply(rule_tac x="(z \<leftrightarrow> u) + (x \<leftrightarrow> y)" in exI)
apply(simp only: alphas)
apply(rule conjI)
apply(simp)
apply(simp add: supp_at_base fresh_star_def)
apply(rule conjI)
apply(simp add: supp_at_base fresh_star_def)
apply(rule conjI)
apply(simp)
apply(rule all)
apply(simp)
unfolding flip_def
apply(perm_simp add: test)
unfolding flip_def[symmetric]
apply(simp)
apply(subst flip_at_base_simps(3))
apply(auto)[2]
apply(simp)
apply(rule all)
apply(rule all)
apply(simp)
done

lemma
  assumes "distinct [x,y,z,u]"
  shows "fv_trm_raw (Foo2_raw z (As_raw x (Var_raw z)) (Var_raw z)) = {atom z}"
using assms
apply(simp add: supp_at_base)
done


end