theory Rsp
imports Abs Tacs
begin
ML {*
fun const_rsp qtys lthy const =
let
val nty = Quotient_Term.derive_qtyp qtys (fastype_of const) lthy
val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
in
HOLogic.mk_Trueprop (rel $ const $ const)
end
*}
(* Replaces bounds by frees and meta implications by implications *)
ML {*
fun prepare_goal trm =
let
val vars = strip_all_vars trm
val fs = rev (map Free vars)
val (fixes, no_alls) = ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
val prems = map HOLogic.dest_Trueprop (Logic.strip_imp_prems no_alls)
val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl no_alls)
in
(fixes, fold (curry HOLogic.mk_imp) prems concl)
end
*}
ML {*
fun get_rsp_goal thy trm =
let
val goalstate = Goal.init (cterm_of thy trm);
val tac = REPEAT o rtac @{thm fun_rel_id};
in
case (SINGLE (tac 1) goalstate) of
NONE => error "rsp_goal failed"
| SOME th => prepare_goal (term_of (cprem_of th 1))
end
*}
ML {*
fun prove_const_rsp qtys bind consts tac ctxt =
let
val rsp_goals = map (const_rsp qtys ctxt) consts
val thy = ProofContext.theory_of ctxt
val (fixed, user_goals) = split_list (map (get_rsp_goal thy) rsp_goals)
val fixed' = distinct (op =) (flat fixed)
val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
val user_thm = Goal.prove ctxt fixed' [] user_goal tac
val user_thms = map repeat_mp (HOLogic.conj_elims user_thm)
fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' resolve_tac user_thms THEN_ALL_NEW atac) 1
val rsp_thms = map (fn gl => Goal.prove ctxt [] [] gl tac) rsp_goals
in
ctxt
|> snd o Local_Theory.note
((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), rsp_thms)
|> Local_Theory.note ((bind, []), user_thms)
end
*}
ML {*
fun fvbv_rsp_tac induct fvbv_simps ctxt =
rtac induct THEN_ALL_NEW
(TRY o rtac @{thm TrueI}) THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (@{thms prod_fv.simps prod_rel.simps set.simps append.simps alphas} @ fvbv_simps)) THEN_ALL_NEW
REPEAT o eresolve_tac [conjE, exE] THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps fvbv_simps) THEN_ALL_NEW
TRY o blast_tac (claset_of ctxt)
*}
ML {*
fun sym_eqvts ctxt = maps (fn x => [sym OF [x]] handle _ => []) (Nominal_ThmDecls.get_eqvts_thms ctxt)
fun all_eqvts ctxt =
Nominal_ThmDecls.get_eqvts_thms ctxt @ Nominal_ThmDecls.get_eqvts_raw_thms ctxt
*}
ML {*
fun constr_rsp_tac inj rsp =
REPEAT o rtac impI THEN'
simp_tac (HOL_ss addsimps inj) THEN' split_conj_tac THEN_ALL_NEW
(asm_simp_tac HOL_ss THEN_ALL_NEW (
REPEAT o rtac @{thm exI[of _ "0 :: perm"]} THEN_ALL_NEW
simp_tac (HOL_basic_ss addsimps @{thms alphas2}) THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (rsp @
@{thms split_conv alphas fresh_star_def fresh_zero_perm permute_zero ball_triv add_0_left prod_rel.simps prod_fv.simps}))
))
*}
ML {*
fun prove_fv_rsp fv_alphas_lst all_alphas tac ctxt =
let
val (fvs_alphas, ls) = split_list fv_alphas_lst;
val (fv_ts, alpha_ts) = split_list fvs_alphas;
val tys = map (domain_type o fastype_of) alpha_ts;
val names = Datatype_Prop.make_tnames tys;
val names2 = Name.variant_list names names;
val args = map Free (names ~~ tys);
val args2 = map Free (names2 ~~ tys);
fun mk_fv_rsp arg arg2 (fv, alpha) = HOLogic.mk_eq ((fv $ arg), (fv $ arg2));
fun fv_rsp_arg (((fv, alpha), (arg, arg2)), l) =
HOLogic.mk_imp (
(alpha $ arg $ arg2),
(foldr1 HOLogic.mk_conj
(HOLogic.mk_eq (fv $ arg, fv $ arg2) ::
(map (mk_fv_rsp arg arg2) l))));
val nobn_eqs = map fv_rsp_arg (((fv_ts ~~ alpha_ts) ~~ (args ~~ args2)) ~~ ls);
fun mk_fv_rsp_bn arg arg2 (fv, alpha) =
HOLogic.mk_imp (
(alpha $ arg $ arg2),
HOLogic.mk_eq ((fv $ arg), (fv $ arg2)));
fun fv_rsp_arg_bn ((arg, arg2), l) =
map (mk_fv_rsp_bn arg arg2) l;
val bn_eqs = flat (map fv_rsp_arg_bn ((args ~~ args2) ~~ ls));
val (_, add_alphas) = chop (length (nobn_eqs @ bn_eqs)) all_alphas;
val atys = map (domain_type o fastype_of) add_alphas;
val anames = Name.variant_list (names @ names2) (Datatype_Prop.make_tnames atys);
val aargs = map Free (anames ~~ atys);
val aeqs = map2 (fn alpha => fn arg => HOLogic.mk_imp (alpha $ arg $ arg, @{term True}))
add_alphas aargs;
val eq = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (nobn_eqs @ bn_eqs @ aeqs));
val th = Goal.prove ctxt (names @ names2) [] eq tac;
val ths = HOLogic.conj_elims th;
val (ths_nobn, ths_bn) = chop (length ls) ths;
fun project (th, l) =
Project_Rule.projects ctxt (1 upto (length l + 1)) (hd (Project_Rule.projections ctxt th))
val ths_nobn_pr = map project (ths_nobn ~~ ls);
in
(flat ths_nobn_pr @ ths_bn)
end
*}
(** alpha_bn_rsp **)
lemma equivp_rspl:
"equivp r \<Longrightarrow> r a b \<Longrightarrow> r a c = r b c"
unfolding equivp_reflp_symp_transp symp_def transp_def
by blast
lemma equivp_rspr:
"equivp r \<Longrightarrow> r a b \<Longrightarrow> r c a = r c b"
unfolding equivp_reflp_symp_transp symp_def transp_def
by blast
ML {*
fun alpha_bn_rsp_tac simps res exhausts a ctxt =
rtac allI THEN_ALL_NEW
case_rules_tac ctxt a exhausts THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps simps addsimps @{thms alphas}) THEN_ALL_NEW
TRY o REPEAT_ALL_NEW (rtac @{thm arg_cong2[of _ _ _ _ "op \<and>"]}) THEN_ALL_NEW
TRY o eresolve_tac res THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps simps)
*}
ML {*
fun build_alpha_bn_rsp_gl a alphas alpha_bn ctxt =
let
val ty = domain_type (fastype_of alpha_bn);
val (l, r) = the (AList.lookup (op=) alphas ty);
in
([HOLogic.mk_all (a, ty, HOLogic.mk_eq (alpha_bn $ l $ Bound 0, alpha_bn $ r $ Bound 0)),
HOLogic.mk_all (a, ty, HOLogic.mk_eq (alpha_bn $ Bound 0 $ l, alpha_bn $ Bound 0 $ r))], ctxt)
end
*}
ML {*
fun prove_alpha_bn_rsp alphas ind simps equivps exhausts alpha_bns ctxt =
let
val ([a], ctxt') = Variable.variant_fixes ["a"] ctxt;
val resl = map (fn x => @{thm equivp_rspl} OF [x]) equivps;
val resr = map (fn x => @{thm equivp_rspr} OF [x]) equivps;
val ths_loc = prove_by_rel_induct alphas (build_alpha_bn_rsp_gl a) ind
(alpha_bn_rsp_tac simps (resl @ resr) exhausts a) alpha_bns ctxt
in
Variable.export ctxt' ctxt ths_loc
end
*}
ML {*
fun build_alpha_alpha_bn_gl alphas alpha_bn ctxt =
let
val ty = domain_type (fastype_of alpha_bn);
val (l, r) = the (AList.lookup (op=) alphas ty);
in
([alpha_bn $ l $ r], ctxt)
end
*}
lemma exi_same: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q p) \<Longrightarrow> \<exists>pi. Q pi"
by auto
ML {*
fun prove_alpha_alphabn alphas ind simps alpha_bns ctxt =
prove_by_rel_induct alphas build_alpha_alpha_bn_gl ind
(fn _ => asm_full_simp_tac (HOL_ss addsimps simps addsimps @{thms alphas})
THEN_ALL_NEW split_conj_tac THEN_ALL_NEW (TRY o etac @{thm exi_same})
THEN_ALL_NEW asm_full_simp_tac HOL_ss) alpha_bns ctxt
*}
ML {*
fun build_rsp_gl alphas fnctn ctxt =
let
val typ = domain_type (fastype_of fnctn);
val (argl, argr) = the (AList.lookup (op=) alphas typ);
in
([HOLogic.mk_eq (fnctn $ argl, fnctn $ argr)], ctxt)
end
*}
ML {*
fun fvbv_rsp_tac' simps ctxt =
asm_full_simp_tac (HOL_basic_ss addsimps @{thms alphas2}) THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (@{thms alphas} @ simps)) THEN_ALL_NEW
REPEAT o eresolve_tac [conjE, exE] THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps simps) THEN_ALL_NEW
TRY o blast_tac (claset_of ctxt)
*}
ML {*
fun build_fvbv_rsps alphas ind simps fnctns ctxt =
prove_by_rel_induct alphas build_rsp_gl ind (fvbv_rsp_tac' simps) fnctns ctxt
*}
end