ML {*
fun dest_cbinop t =
let
val (t2, rhs) = Thm.dest_comb t;
val (bop, lhs) = Thm.dest_comb t2;
in
(bop, (lhs, rhs))
end
*}
ML {*
fun dest_ceq t =
let
val (bop, pair) = dest_cbinop t;
val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
in
if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
end
*}
ML {*
fun split_binop_conv t =
let
val (lhs, rhs) = dest_ceq t;
val (bop, _) = dest_cbinop lhs;
val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
val [cmT, crT] = Thm.dest_ctyp cr2;
in
Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
end
*}
ML {*
fun split_arg_conv t =
let
val (lhs, rhs) = dest_ceq t;
val (lop, larg) = Thm.dest_comb lhs;
val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
in
Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
end
*}
ML {*
fun split_binop_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = split_binop_conv cconcl;
in
rtac rewr n thm
end
handle CTERM _ => Seq.empty
*}
ML {*
fun split_arg_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = split_arg_conv cconcl;
in
rtac rewr n thm
end
handle CTERM _ => Seq.empty
*}
lemma trueprop_cong:
shows "(a ≡ b) ⟹ (Trueprop a ≡ Trueprop b)"
by auto