FSet.thy
author Christian Urban <urbanc@in.tum.de>
Sat, 24 Oct 2009 01:33:29 +0200
changeset 165 2c83d04262f9
parent 164 4f00ca4f5ef4
child 167 3413aa899aa7
permissions -rw-r--r--
fixed problem with incorrect ABS/REP name

theory FSet
imports QuotMain
begin

(* test for get_fun *)
datatype t =
   vr "string"
 | ap "t list"
 | lm "string" "t"

consts Rt :: "t \<Rightarrow> t \<Rightarrow> bool"
axioms t_eq: "EQUIV Rt"

quotient qt = "t" / "Rt"
    by (rule t_eq)

setup {*
  maps_update @{type_name "list"} {mapfun = @{const_name "map"},      relfun = @{const_name "LIST_REL"}} #>
  maps_update @{type_name "*"}    {mapfun = @{const_name "prod_fun"}, relfun = @{const_name "prod_rel"}} #>
  maps_update @{type_name "fun"}  {mapfun = @{const_name "fun_map"},  relfun = @{const_name "FUN_REL"}}
*}


ML {*
get_fun repF @{typ t} @{typ qt} @{context} @{typ "((((qt \<Rightarrow> qt) \<Rightarrow> qt) \<Rightarrow> qt) list) * nat"}
 |> fst
 |> Syntax.string_of_term @{context}
 |> writeln
*}

ML {*
get_fun absF @{typ t} @{typ qt} @{context} @{typ "qt * nat"}
 |> fst
 |> Syntax.string_of_term @{context}
 |> writeln
*}

ML {*
get_fun absF @{typ t} @{typ qt} @{context} @{typ "(qt \<Rightarrow> qt) \<Rightarrow> qt"}
 |> fst
 |> Syntax.pretty_term @{context}
 |> Pretty.string_of
 |> writeln
*}
(* end test get_fun *)


inductive
  list_eq (infix "\<approx>" 50)
where
  "a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"

lemma list_eq_refl:
  shows "xs \<approx> xs"
  apply (induct xs)
   apply (auto intro: list_eq.intros)
  done

lemma equiv_list_eq:
  shows "EQUIV list_eq"
  unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
  apply(auto intro: list_eq.intros list_eq_refl)
  done

quotient fset = "'a list" / "list_eq"
  apply(rule equiv_list_eq)
  done

print_theorems

typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"

ML {* @{term "Abs_fset"} *}
local_setup {*
  make_const_def @{binding EMPTY} @{term "[]"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term Nil
term EMPTY
thm EMPTY_def


local_setup {*
  make_const_def @{binding INSERT} @{term "op #"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term Cons
term INSERT
thm INSERT_def

local_setup {*
  make_const_def @{binding UNION} @{term "op @"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term append
term UNION
thm UNION_def


thm QUOTIENT_fset

thm QUOT_TYPE_I_fset.thm11


fun
  membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
  m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"

fun
  card1 :: "'a list \<Rightarrow> nat"
where
  card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"

local_setup {*
  make_const_def @{binding card} @{term "card1"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term card1
term card
thm card_def

(* text {*
 Maybe make_const_def should require a theorem that says that the particular lifted function
 respects the relation. With it such a definition would be impossible:
 make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)

lemma card1_0:
  fixes a :: "'a list"
  shows "(card1 a = 0) = (a = [])"
  apply (induct a)
   apply (simp)
  apply (simp_all)
   apply meson
  apply (simp_all)
  done

lemma not_mem_card1:
  fixes x :: "'a"
  fixes xs :: "'a list"
  shows "~(x memb xs) \<Longrightarrow> card1 (x # xs) = Suc (card1 xs)"
  by simp


lemma mem_cons:
  fixes x :: "'a"
  fixes xs :: "'a list"
  assumes a : "x memb xs"
  shows "x # xs \<approx> xs"
  using a
  apply (induct xs)
  apply (auto intro: list_eq.intros)
  done

lemma card1_suc:
  fixes xs :: "'a list"
  fixes n :: "nat"
  assumes c: "card1 xs = Suc n"
  shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
  using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done

primrec
  fold1
where
  "fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
     (if ((!u v. (f u v = f v u))
      \<and> (!u v w. ((f u (f v w) = f (f u v) w))))
     then (
       if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
     ) else z)"

(* fold1_def is not usable, but: *)
thm fold1.simps

lemma fs1_strong_cases:
  fixes X :: "'a list"
  shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
  apply (induct X)
  apply (simp)
  apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
  done

local_setup {*
  make_const_def @{binding IN} @{term "membship"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term membship
term IN
thm IN_def

ML {*
  val consts = [@{const_name "Nil"}, @{const_name "Cons"},
                @{const_name "membship"}, @{const_name "card1"},
                @{const_name "append"}, @{const_name "fold1"}];
*}

ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def} *}
ML {* val fset_defs_sym = map (fn t => symmetric (unabs_def @{context} t)) fset_defs *}

thm fun_map.simps
text {* Respectfullness *}

lemma memb_rsp:
  fixes z
  assumes a: "list_eq x y"
  shows "(z memb x) = (z memb y)"
  using a by induct auto

lemma ho_memb_rsp:
  "(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
  apply (simp add: FUN_REL.simps)
  apply (metis memb_rsp)
  done

lemma card1_rsp:
  fixes a b :: "'a list"
  assumes e: "a \<approx> b"
  shows "card1 a = card1 b"
  using e apply induct
  apply (simp_all add:memb_rsp)
  done

lemma cons_rsp:
  fixes z
  assumes a: "xs \<approx> ys"
  shows "(z # xs) \<approx> (z # ys)"
  using a by (rule list_eq.intros(5))

lemma ho_cons_rsp:
  "op = ===> op \<approx> ===> op \<approx> op # op #"
  apply (simp add: FUN_REL.simps)
  apply (metis cons_rsp)
  done

lemma append_respects_fst:
  assumes a : "list_eq l1 l2"
  shows "list_eq (l1 @ s) (l2 @ s)"
  using a
  apply(induct)
  apply(auto intro: list_eq.intros)
  apply(simp add: list_eq_refl)
done

thm list.induct
lemma list_induct_hol4:
  fixes P :: "'a list \<Rightarrow> bool"
  assumes "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
  shows "(\<forall>l. (P l))"
  sorry

ML {* atomize_thm @{thm list_induct_hol4} *}

prove list_induct_r: {*
   build_regularize_goal (atomize_thm @{thm list_induct_hol4}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
  apply (simp only: equiv_res_forall[OF equiv_list_eq])
  thm RIGHT_RES_FORALL_REGULAR
  apply (rule RIGHT_RES_FORALL_REGULAR)
  prefer 2
  apply (assumption)
  apply (metis)
  done

ML {*
fun instantiate_tac thm = Subgoal.FOCUS (fn {concl, ...} =>
let
  val pat = Drule.strip_imp_concl (cprop_of thm)
  val insts = Thm.match (pat, concl)
in
  rtac (Drule.instantiate insts thm) 1
end
handle _ => no_tac
)
*}

ML {*
fun res_forall_rsp_tac ctxt =
  (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms FUN_REL.simps}))
  THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' rtac @{thm impI}
  THEN' instantiate_tac @{thm RES_FORALL_RSP} ctxt THEN'
  (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms FUN_REL.simps}))
*}


ML {*
fun quotient_tac quot_thm =
  REPEAT_ALL_NEW (FIRST' [
    rtac @{thm FUN_QUOTIENT},
    rtac quot_thm,
    rtac @{thm IDENTITY_QUOTIENT}
  ])
*}

ML {*
fun LAMBDA_RES_TAC ctxt =
  case (term_of o #concl o fst) (Subgoal.focus ctxt 1 (Isar.goal ())) of
    (_ $ (_ $ (Abs(_,_,_))$(Abs(_,_,_)))) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | _ => fn _ => no_tac
*}


ML {*
fun r_mk_comb_tac ctxt quot_thm reflex_thm trans_thm =
  (FIRST' [
    rtac @{thm FUN_QUOTIENT},
    rtac quot_thm,
    rtac @{thm IDENTITY_QUOTIENT},
    rtac @{thm ext},
    rtac trans_thm,
    LAMBDA_RES_TAC ctxt,
    res_forall_rsp_tac ctxt,
    (instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN' (RANGE [quotient_tac quot_thm])),
    rtac refl,
    (instantiate_tac @{thm APPLY_RSP} ctxt THEN' (RANGE [quotient_tac quot_thm, quotient_tac quot_thm])),
    rtac reflex_thm, 
    atac,
    (
     (simp_tac ((Simplifier.context @{context} HOL_ss) addsimps @{thms FUN_REL.simps}))
     THEN_ALL_NEW (fn _ => no_tac)
    )
    ])
*}

ML {*
fun r_mk_comb_tac_fset ctxt =
  r_mk_comb_tac ctxt @{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
*}


ML {* val thm = @{thm list_induct_r} OF [atomize_thm @{thm list_induct_hol4}] *}
ML {* val trm_r = build_repabs_goal @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val trm = build_repabs_term @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}


prove list_induct_tr: trm_r
apply (atomize(full))
(* APPLY_RSP_TAC *)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
(* LAMBDA_RES_TAC *)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* REFL_TAC *)
apply (simp)
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* REFL_TAC *)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
(* APPLY_RSP_TAC *)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* REFL_TAC *)
apply (simp)
(* APPLY_RSP *)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* REFL_TAC *)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
(* W(C (curry op THEN) (G... *)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
(* CONS respects *)
apply (rule ho_cons_rsp)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (subst FUN_REL.simps)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done

prove list_induct_t: trm
apply (simp only: list_induct_tr[symmetric])
apply (tactic {* rtac thm 1 *})
done

ML {* val nthm = MetaSimplifier.rewrite_rule fset_defs_sym (snd (no_vars (Context.Theory @{theory}, @{thm list_induct_t}))) *}

thm list.recs(2)
thm m2
ML {* atomize_thm @{thm m2} *}

prove m2_r_p: {*
   build_regularize_goal (atomize_thm @{thm m2}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
  apply (simp add: equiv_res_forall[OF equiv_list_eq])
done

ML {* val m2_r = @{thm m2_r_p} OF [atomize_thm @{thm m2}] *}
ML {* val m2_t_g = build_repabs_goal @{context} m2_r consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val m2_t = build_repabs_term @{context} m2_r consts @{typ "'a list"} @{typ "'a fset"} *}
prove m2_t_p: m2_t_g
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
prefer 2
apply (subst FUN_REL.simps)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
prefer 2
apply (subst FUN_REL.simps)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (subst FUN_REL.simps)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (rule ho_memb_rsp)
apply (rule ho_cons_rsp)
apply (rule ho_memb_rsp)
apply (auto)
done

prove m2_t: m2_t
apply (simp only: m2_t_p[symmetric])
apply (tactic {* rtac m2_r 1 *})
done

lemma id_apply2 [simp]: "id x \<equiv> x"
  by (simp add: id_def)

thm LAMBDA_PRS
ML {*
 val t = prop_of @{thm LAMBDA_PRS}
 val tt = Drule.instantiate' [SOME @{ctyp "'a list"}, SOME @{ctyp "'a fset"}] [] @{thm LAMBDA_PRS}
 val ttt = @{thm LAMBDA_PRS} OF [@{thm QUOTIENT_fset}, @{thm IDENTITY_QUOTIENT}]
 val tttt = @{thm "HOL.sym"} OF [ttt]
*}
ML {*
 val ttttt = MetaSimplifier.rewrite_rule [@{thm id_apply2}] tttt
 val zzz = @{thm m2_t}
*}

ML {*
fun eqsubst_thm ctxt thms thm =
  let
    val goalstate = Goal.init (Thm.cprop_of thm)
    val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
      NONE => error "eqsubst_thm"
    | SOME th => cprem_of th 1
    val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1
    val cgoal = cterm_of (ProofContext.theory_of ctxt) (Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a'))
    val rt = Toplevel.program (fn () => Goal.prove_internal [] cgoal (fn _ => tac));
  in
    Simplifier.rewrite_rule [rt] thm
  end
*}
ML {* val m2_t' = eqsubst_thm @{context} [ttttt] @{thm m2_t} *}
ML {* val rwr = @{thm FORALL_PRS[OF QUOTIENT_fset]} *}
ML {* val rwrs = @{thm "HOL.sym"} OF [ObjectLogic.rulify rwr] *}
ML {* val ithm = eqsubst_thm @{context} [rwrs] m2_t' *}
ML {* val rthm = MetaSimplifier.rewrite_rule fset_defs_sym ithm *}
ML {* ObjectLogic.rulify rthm *}


ML {* val card1_suc_f = Thm.freezeT (atomize_thm @{thm card1_suc}) *}

prove card1_suc_r: {*
 Logic.mk_implies
   ((prop_of card1_suc_f),
   (regularise (prop_of card1_suc_f) @{typ "'a List.list"} @{term "op \<approx>"} @{context})) *}
  apply (simp add: equiv_res_forall[OF equiv_list_eq] equiv_res_exists[OF equiv_list_eq])
  done

ML {* @{thm card1_suc_r} OF [card1_suc_f] *}

ML {* val li = Thm.freezeT (atomize_thm @{thm fold1.simps(2)}) *}
prove fold1_def_2_r: {*
 Logic.mk_implies
   ((prop_of li),
   (regularise (prop_of li) @{typ "'a List.list"} @{term "op \<approx>"} @{context})) *}
  apply (simp add: equiv_res_forall[OF equiv_list_eq])
  done

ML {* @{thm fold1_def_2_r} OF [li] *}


lemma yy:
  shows "(False = x memb []) = (False = IN (x::nat) EMPTY)"
unfolding IN_def EMPTY_def
apply(rule_tac f="(op =) False" in arg_cong)
apply(rule memb_rsp)
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
apply(rule list_eq.intros)
done

lemma
  shows "IN (x::nat) EMPTY = False"
using m1
apply -
apply(rule yy[THEN iffD1, symmetric])
apply(simp)
done

lemma
  shows "((x=y) \<or> (IN x xs) = (IN (x::nat) (INSERT y xs))) =
         ((x=y) \<or> x memb REP_fset xs = x memb (y # REP_fset xs))"
unfolding IN_def INSERT_def
apply(rule_tac f="(op \<or>) (x=y)" in arg_cong)
apply(rule_tac f="(op =) (x memb REP_fset xs)" in arg_cong)
apply(rule memb_rsp)
apply(rule list_eq.intros(3))
apply(unfold REP_fset_def ABS_fset_def)
apply(simp only: QUOT_TYPE.REP_ABS_rsp[OF QUOT_TYPE_fset])
apply(rule list_eq_refl)
done

lemma yyy:
  shows "
    (
     (UNION EMPTY s = s) &
     ((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))
    ) = (
     ((ABS_fset ([] @ REP_fset s)) = s) &
     ((ABS_fset ((e # (REP_fset s1)) @ REP_fset s2)) = ABS_fset (e # (REP_fset s1 @ REP_fset s2)))
    )"
  unfolding UNION_def EMPTY_def INSERT_def
  apply(rule_tac f="(op &)" in arg_cong2)
  apply(rule_tac f="(op =)" in arg_cong2)
  apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
  apply(rule append_respects_fst)
  apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
  apply(rule list_eq_refl)
  apply(simp)
  apply(rule_tac f="(op =)" in arg_cong2)
  apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
  apply(rule append_respects_fst)
  apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
  apply(rule list_eq_refl)
  apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
  apply(rule list_eq.intros(5))
  apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
  apply(rule list_eq_refl)
done

lemma
  shows "
     (UNION EMPTY s = s) &
     ((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))"
  apply (simp add: yyy)
  apply (simp add: QUOT_TYPE_I_fset.thm10)
  done

ML {*
  val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m2}))
*}

ML {*
cterm_of @{theory} (prop_of m1_novars);
cterm_of @{theory} (build_repabs_term @{context} m1_novars consts @{typ "'a list"} @{typ "'a fset"});
*}


(* Has all the theorems about fset plugged in. These should be parameters to the tactic *)
ML {*
  fun transconv_fset_tac' ctxt =
    (LocalDefs.unfold_tac @{context} fset_defs) THEN
    ObjectLogic.full_atomize_tac 1 THEN
    REPEAT_ALL_NEW (FIRST' [
      rtac @{thm list_eq_refl},
      rtac @{thm cons_preserves},
      rtac @{thm memb_rsp},
      rtac @{thm card1_rsp},
      rtac @{thm QUOT_TYPE_I_fset.R_trans2},
      CHANGED o (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms QUOT_TYPE_I_fset.REP_ABS_rsp})),
      Cong_Tac.cong_tac @{thm cong},
      rtac @{thm ext}
    ]) 1
*}

ML {*
  val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m1}))
  val goal = build_repabs_goal @{context} m1_novars consts @{typ "'a list"} @{typ "'a fset"}
  val cgoal = cterm_of @{theory} goal
  val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}

(*notation ( output) "prop" ("#_" [1000] 1000) *)
notation ( output) "Trueprop" ("#_" [1000] 1000)


prove {* (Thm.term_of cgoal2) *}
  apply (tactic {* transconv_fset_tac' @{context} *})
  done

thm length_append (* Not true but worth checking that the goal is correct *)
ML {*
  val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm length_append}))
  val goal = build_repabs_goal @{context} m1_novars consts @{typ "'a list"} @{typ "'a fset"}
  val cgoal = cterm_of @{theory} goal
  val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
  apply (tactic {* transconv_fset_tac' @{context} *})
  sorry

thm m2
ML {*
  val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m2}))
  val goal = build_repabs_goal @{context} m1_novars consts @{typ "'a list"} @{typ "'a fset"}
  val cgoal = cterm_of @{theory} goal
  val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
  apply (tactic {* transconv_fset_tac' @{context} *})
  done

thm list_eq.intros(4)
ML {*
  val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list_eq.intros(4)}))
  val goal = build_repabs_goal @{context} m1_novars consts @{typ "'a list"} @{typ "'a fset"}
  val cgoal = cterm_of @{theory} goal
  val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
  val cgoal3 = Thm.rhs_of (MetaSimplifier.rewrite true @{thms QUOT_TYPE_I_fset.thm10} cgoal2)
*}

(* It is the same, but we need a name for it. *)
prove zzz : {* Thm.term_of cgoal3 *}
  apply (tactic {* transconv_fset_tac' @{context} *})
  done

(*lemma zzz' :
  "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))"
  using list_eq.intros(4) by (simp only: zzz)

thm QUOT_TYPE_I_fset.REPS_same
ML {* val zzz'' = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} @{thm zzz'} *}
*)

thm list_eq.intros(5)
(* prove {* build_repabs_goal @{context} (atomize_thm @{thm list_eq.intros(5)}) consts @{typ "'a list"} @{typ "'a fset"} *} *)
ML {*
  val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list_eq.intros(5)}))
  val goal = build_repabs_goal @{context} m1_novars consts @{typ "'a list"} @{typ "'a fset"}
  val cgoal = cterm_of @{theory} goal
  val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
  apply (tactic {* transconv_fset_tac' @{context} *})
  done

ML {*
  fun lift_theorem_fset_aux thm lthy =
    let
      val ((_, [novars]), lthy2) = Variable.import true [thm] lthy;
      val goal = build_repabs_goal @{context} novars consts @{typ "'a list"} @{typ "'a fset"};
      val cgoal = cterm_of @{theory} goal;
      val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal);
      val tac = transconv_fset_tac' @{context};
      val cthm = Goal.prove_internal [] cgoal2 (fn _ => tac);
      val nthm = MetaSimplifier.rewrite_rule [symmetric cthm] (snd (no_vars (Context.Theory @{theory}, thm)))
      val nthm2 = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same QUOT_TYPE_I_fset.thm10} nthm;
      val [nthm3] = ProofContext.export lthy2 lthy [nthm2]
    in
      nthm3
    end
*}

ML {* lift_theorem_fset_aux @{thm m1} @{context} *}

ML {*
  fun lift_theorem_fset name thm lthy =
    let
      val lifted_thm = lift_theorem_fset_aux thm lthy;
      val (_, lthy2) = note (name, lifted_thm) lthy;
    in
      lthy2
    end;
*}

(* These do not work without proper definitions to rewrite back *)
local_setup {* lift_theorem_fset @{binding "m1_lift"} @{thm m1} *}
local_setup {* lift_theorem_fset @{binding "leqi4_lift"} @{thm list_eq.intros(4)} *}
local_setup {* lift_theorem_fset @{binding "leqi5_lift"} @{thm list_eq.intros(5)} *}
local_setup {* lift_theorem_fset @{binding "m2_lift"} @{thm m2} *}
thm m1_lift
thm leqi4_lift
thm leqi5_lift
thm m2_lift
ML {* @{thm card1_suc_r} OF [card1_suc_f] *}
(*ML {* Toplevel.program (fn () => lift_theorem_fset @{binding "card_suc"}
     (@{thm card1_suc_r} OF [card1_suc_f]) @{context}) *}*)
(*local_setup {* lift_theorem_fset @{binding "card_suc"} @{thm card1_suc} *}*)

thm leqi4_lift
ML {*
  val (nam, typ) = hd (Term.add_vars (prop_of @{thm leqi4_lift}) [])
  val (_, l) = dest_Type typ
  val t = Type ("FSet.fset", l)
  val v = Var (nam, t)
  val cv = cterm_of @{theory} ((term_of @{cpat "REP_fset"}) $ v)
*}

ML {*
  Toplevel.program (fn () =>
    MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
      Drule.instantiate' [] [NONE, SOME (cv)] @{thm leqi4_lift}
    )
  )
*}



(*prove aaa: {* (Thm.term_of cgoal2) *}
  apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
  apply (atomize(full))
  apply (tactic {* transconv_fset_tac' @{context} 1 *})
  done*)

(*
datatype obj1 =
  OVAR1 "string"
| OBJ1 "(string * (string \<Rightarrow> obj1)) list"
| INVOKE1 "obj1 \<Rightarrow> string"
| UPDATE1 "obj1 \<Rightarrow> string \<Rightarrow> (string \<Rightarrow> obj1)"
*)

end