Bindings adapted to multiple defined datatypes.
theory Perm
imports "Nominal2_Atoms"
begin
ML {*
open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *)
fun permute ty = Const (@{const_name permute}, @{typ perm} --> ty --> ty);
val minus_perm = Const (@{const_name minus}, @{typ perm} --> @{typ perm});
*}
ML {*
(* TODO: full_name can be obtained from new_type_names with Datatype *)
fun define_raw_perms new_type_names full_tnames thy =
let
val {descr, induct, ...} = Datatype.the_info thy (hd full_tnames);
(* TODO: [] should be the sorts that we'll take from the specification *)
val sorts = [];
fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
val perm_names' = Datatype_Prop.indexify_names (map (fn (i, _) =>
"permute_" ^ name_of_typ (nth_dtyp i)) descr);
val perm_types = map (fn (i, _) =>
let val T = nth_dtyp i
in @{typ perm} --> T --> T end) descr;
val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
val perm_names_types' = perm_names' ~~ perm_types;
val pi = Free ("pi", @{typ perm});
fun perm_eq_constr i (cname, dts) =
let
val Ts = map (typ_of_dtyp descr sorts) dts;
val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
val args = map Free (names ~~ Ts);
val c = Const (cname, Ts ---> (nth_dtyp i));
fun perm_arg (dt, x) =
let val T = type_of x
in
if is_rec_type dt then
let val (Us, _) = strip_type T
in list_abs (map (pair "x") Us,
Free (nth perm_names_types' (body_index dt)) $ pi $
list_comb (x, map (fn (i, U) =>
(permute U) $ (minus_perm $ pi) $ Bound i)
((length Us - 1 downto 0) ~~ Us)))
end
else (permute T) $ pi $ x
end;
in
(Attrib.empty_binding, HOLogic.mk_Trueprop (HOLogic.mk_eq
(Free (nth perm_names_types' i) $
Free ("pi", @{typ perm}) $ list_comb (c, args),
list_comb (c, map perm_arg (dts ~~ args)))))
end;
fun perm_eq (i, (_, _, constrs)) = map (perm_eq_constr i) constrs;
val perm_eqs = maps perm_eq descr;
val lthy =
Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
(* TODO: Use the version of prmrec that gives the names explicitely. *)
val (perm_ldef, lthy') =
Primrec.add_primrec
(map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs lthy;
val perm_frees =
(distinct (op =)) (map (fst o strip_comb o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) perm_ldef);
val perm_empty_thms =
let
val gl =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map (fn ((perm, T), x) => HOLogic.mk_eq
(perm $ @{term "0 :: perm"} $ Free (x, T),
Free (x, T)))
(perm_frees ~~
map body_type perm_types ~~ perm_indnames)));
fun tac {context = ctxt, ...} =
EVERY [
indtac induct perm_indnames 1,
ALLGOALS (asm_full_simp_tac (@{simpset} addsimps perm_ldef))
];
in
(List.take (split_conj_thm (Goal.prove lthy' perm_indnames [] gl tac), length new_type_names))
end;
val add_perm = @{term "op + :: (perm \<Rightarrow> perm \<Rightarrow> perm)"}
val pi1 = Free ("pi1", @{typ perm});
val pi2 = Free ("pi2", @{typ perm});
val perm_append_thms =
List.take ((split_conj_thm
(Goal.prove lthy' ("pi1" :: "pi2" :: perm_indnames) []
(HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map (fn ((perm, T), x) =>
let
val lhs = perm $ (add_perm $ pi1 $ pi2) $ Free (x, T)
val rhs = perm $ pi1 $ (perm $ pi2 $ Free (x, T))
in HOLogic.mk_eq (lhs, rhs)
end)
(perm_frees ~~
map body_type perm_types ~~ perm_indnames))))
(fn _ => EVERY [indtac induct perm_indnames 1,
ALLGOALS (asm_full_simp_tac (@{simpset} addsimps perm_ldef))]))),
length new_type_names);
fun tac ctxt perm_thms =
(Class.intro_classes_tac []) THEN (ALLGOALS (
simp_tac (@{simpset} addsimps perm_thms
)));
fun morphism phi = map (Morphism.thm phi);
in
Class_Target.prove_instantiation_exit_result morphism tac (perm_empty_thms @ perm_append_thms) lthy'
end
*}
(* Test
atom_decl name
datatype rtrm1 =
rVr1 "name"
| rAp1 "rtrm1" "rtrm1 list"
| rLm1 "name" "rtrm1"
| rLt1 "bp" "rtrm1" "rtrm1"
and bp =
BUnit
| BVr "name"
| BPr "bp" "bp"
setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Perm.rtrm1", "Perm.bp"] *}
print_theorems
*)
end