Moved working Fset3 properties to FSet.
theory FSet3
imports "../../../Nominal/FSet"
begin
(* TBD *)
text {* syntax for fset comprehensions (adapted from lists) *}
nonterminals fsc_qual fsc_quals
syntax
"_fsetcompr" :: "'a \<Rightarrow> fsc_qual \<Rightarrow> fsc_quals \<Rightarrow> 'a fset" ("{|_ . __")
"_fsc_gen" :: "'a \<Rightarrow> 'a fset \<Rightarrow> fsc_qual" ("_ <- _")
"_fsc_test" :: "bool \<Rightarrow> fsc_qual" ("_")
"_fsc_end" :: "fsc_quals" ("|}")
"_fsc_quals" :: "fsc_qual \<Rightarrow> fsc_quals \<Rightarrow> fsc_quals" (", __")
"_fsc_abs" :: "'a => 'b fset => 'b fset"
syntax (xsymbols)
"_fsc_gen" :: "'a \<Rightarrow> 'a fset \<Rightarrow> fsc_qual" ("_ \<leftarrow> _")
syntax (HTML output)
"_fsc_gen" :: "'a \<Rightarrow> 'a fset \<Rightarrow> fsc_qual" ("_ \<leftarrow> _")
parse_translation (advanced) {*
let
val femptyC = Syntax.const @{const_name fempty};
val finsertC = Syntax.const @{const_name finsert};
val fmapC = Syntax.const @{const_name fmap};
val fconcatC = Syntax.const @{const_name fconcat};
val IfC = Syntax.const @{const_name If};
fun fsingl x = finsertC $ x $ femptyC;
fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *)
let
val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT);
val e = if opti then fsingl e else e;
val case1 = Syntax.const "_case1" $ p $ e;
val case2 = Syntax.const "_case1" $ Syntax.const Term.dummy_patternN
$ femptyC;
val cs = Syntax.const "_case2" $ case1 $ case2
val ft = Datatype_Case.case_tr false Datatype.info_of_constr
ctxt [x, cs]
in lambda x ft end;
fun abs_tr ctxt (p as Free(s,T)) e opti =
let val thy = ProofContext.theory_of ctxt;
val s' = Sign.intern_const thy s
in if Sign.declared_const thy s'
then (pat_tr ctxt p e opti, false)
else (lambda p e, true)
end
| abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false);
fun fsc_tr ctxt [e, Const("_fsc_test",_) $ b, qs] =
let
val res = case qs of
Const("_fsc_end",_) => fsingl e
| Const("_fsc_quals",_)$ q $ qs => fsc_tr ctxt [e, q, qs];
in
IfC $ b $ res $ femptyC
end
| fsc_tr ctxt [e, Const("_fsc_gen",_) $ p $ es, Const("_fsc_end",_)] =
(case abs_tr ctxt p e true of
(f,true) => fmapC $ f $ es
| (f, false) => fconcatC $ (fmapC $ f $ es))
| fsc_tr ctxt [e, Const("_fsc_gen",_) $ p $ es, Const("_fsc_quals",_) $ q $ qs] =
let
val e' = fsc_tr ctxt [e, q, qs];
in
fconcatC $ (fmapC $ (fst (abs_tr ctxt p e' false)) $ es)
end
in [("_fsetcompr", fsc_tr)] end
*}
(* NEEDS FIXING *)
(* examles *)
(*
term "{|(x,y,z). b|}"
term "{|x. x \<leftarrow> xs|}"
term "{|(x,y,z). x\<leftarrow>xs|}"
term "{|e x y. x\<leftarrow>xs, y\<leftarrow>ys|}"
term "{|(x,y,z). x<a, x>b|}"
term "{|(x,y,z). x\<leftarrow>xs, x>b|}"
term "{|(x,y,z). x<a, x\<leftarrow>xs|}"
term "{|(x,y). Cons True x \<leftarrow> xs|}"
term "{|(x,y,z). Cons x [] \<leftarrow> xs|}"
term "{|(x,y,z). x<a, x>b, x=d|}"
term "{|(x,y,z). x<a, x>b, y\<leftarrow>ys|}"
term "{|(x,y,z). x<a, x\<leftarrow>xs,y>b|}"
term "{|(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys|}"
term "{|(x,y,z). x\<leftarrow>xs, x>b, y<a|}"
term "{|(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys|}"
term "{|(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x|}"
term "{|(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs|}"
*)
(* BELOW CONSTRUCTION SITE *)
end