(* Title: nominal_library.ML
Author: Christian Urban
Basic functions for nominal.
*)
signature NOMINAL_LIBRARY =
sig
val last2: 'a list -> 'a * 'a
val order: ('a * 'a -> bool) -> 'a list -> ('a * 'b) list -> 'b list
val remove_dups: ('a * 'a -> bool) -> 'a list -> 'a list
val map4: ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
val split_filter: ('a -> bool) -> 'a list -> 'a list * 'a list
val is_true: term -> bool
val dest_listT: typ -> typ
val dest_fsetT: typ -> typ
val mk_id: term -> term
val mk_all: (string * typ) -> term -> term
val sum_case_const: typ -> typ -> typ -> term
val mk_sum_case: term -> term -> term
val mk_minus: term -> term
val mk_plus: term -> term -> term
val perm_ty: typ -> typ
val mk_perm_ty: typ -> term -> term -> term
val mk_perm: term -> term -> term
val dest_perm: term -> term * term
val mk_sort_of: term -> term
val atom_ty: typ -> typ
val atom_const: typ -> term
val mk_atom_ty: typ -> term -> term
val mk_atom: term -> term
val mk_atom_set_ty: typ -> term -> term
val mk_atom_set: term -> term
val mk_atom_fset_ty: typ -> term -> term
val mk_atom_fset: term -> term
val mk_atom_list_ty: typ -> term -> term
val mk_atom_list: term -> term
val is_atom: Proof.context -> typ -> bool
val is_atom_set: Proof.context -> typ -> bool
val is_atom_fset: Proof.context -> typ -> bool
val is_atom_list: Proof.context -> typ -> bool
val to_set_ty: typ -> term -> term
val to_set: term -> term
val atomify_ty: Proof.context -> typ -> term -> term
val atomify: Proof.context -> term -> term
val setify_ty: Proof.context -> typ -> term -> term
val setify: Proof.context -> term -> term
val listify_ty: Proof.context -> typ -> term -> term
val listify: Proof.context -> term -> term
val fresh_star_ty: typ -> typ
val fresh_star_const: typ -> term
val mk_fresh_star_ty: typ -> term -> term -> term
val mk_fresh_star: term -> term -> term
val supp_ty: typ -> typ
val supp_const: typ -> term
val mk_supp_ty: typ -> term -> term
val mk_supp: term -> term
val supp_rel_ty: typ -> typ
val supp_rel_const: typ -> term
val mk_supp_rel_ty: typ -> term -> term -> term
val mk_supp_rel: term -> term -> term
val supports_const: typ -> term
val mk_supports_ty: typ -> term -> term -> term
val mk_supports: term -> term -> term
val finite_const: typ -> term
val mk_finite_ty: typ -> term -> term
val mk_finite: term -> term
val mk_equiv: thm -> thm
val safe_mk_equiv: thm -> thm
val mk_diff: term * term -> term
val mk_append: term * term -> term
val mk_union: term * term -> term
val fold_union: term list -> term
val fold_append: term list -> term
val mk_conj: term * term -> term
val fold_conj: term list -> term
(* fresh arguments for a term *)
val fresh_args: Proof.context -> term -> term list
(* datatype operations *)
type cns_info = (term * typ * typ list * bool list) list
val all_dtyps: Datatype_Aux.descr -> (string * sort) list -> typ list
val nth_dtyp: Datatype_Aux.descr -> (string * sort) list -> int -> typ
val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> cns_info list
val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> cns_info
val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list
(* tactics for function package *)
val pat_completeness_simp: thm list -> Proof.context -> tactic
val prove_termination: thm list -> Proof.context -> Function.info * local_theory
(* transformations of premises in inductions *)
val transform_prem1: Proof.context -> string list -> thm -> thm
val transform_prem2: Proof.context -> string list -> thm -> thm
(* transformation into the object logic *)
val atomize: thm -> thm
end
structure Nominal_Library: NOMINAL_LIBRARY =
struct
(* orders an AList according to keys *)
fun order eq keys list =
map (the o AList.lookup eq list) keys
(* remove duplicates *)
fun remove_dups eq [] = []
| remove_dups eq (x :: xs) =
if member eq xs x
then remove_dups eq xs
else x :: remove_dups eq xs
fun last2 [] = raise Empty
| last2 [_] = raise Empty
| last2 [x, y] = (x, y)
| last2 (_ :: xs) = last2 xs
fun map4 _ [] [] [] [] = []
| map4 f (x :: xs) (y :: ys) (z :: zs) (u :: us) = f x y z u :: map4 f xs ys zs us
fun split_filter f [] = ([], [])
| split_filter f (x :: xs) =
let
val (r, l) = split_filter f xs
in
if f x
then (x :: r, l)
else (r, x :: l)
end
fun is_true @{term "Trueprop True"} = true
| is_true _ = false
fun dest_listT (Type (@{type_name list}, [T])) = T
| dest_listT T = raise TYPE ("dest_listT: list type expected", [T], [])
fun dest_fsetT (Type (@{type_name fset}, [T])) = T
| dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
fun mk_id trm =
let
val ty = fastype_of trm
in
Const (@{const_name id}, ty --> ty) $ trm
end
fun mk_all (a, T) t = Term.all T $ Abs (a, T, t)
fun sum_case_const ty1 ty2 ty3 =
Const (@{const_name sum_case}, [ty1 --> ty3, ty2 --> ty3, Type (@{type_name sum}, [ty1, ty2])] ---> ty3)
fun mk_sum_case trm1 trm2 =
let
val ([ty1], ty3) = strip_type (fastype_of trm1)
val ty2 = domain_type (fastype_of trm2)
in
sum_case_const ty1 ty2 ty3 $ trm1 $ trm2
end
fun mk_minus p = @{term "uminus::perm => perm"} $ p
fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q
fun perm_ty ty = @{typ "perm"} --> ty --> ty
fun mk_perm_ty ty p trm = Const (@{const_name "permute"}, perm_ty ty) $ p $ trm
fun mk_perm p trm = mk_perm_ty (fastype_of trm) p trm
fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t)
| dest_perm t = raise TERM ("dest_perm", [t]);
fun mk_sort_of t = @{term "sort_of"} $ t;
fun atom_ty ty = ty --> @{typ "atom"};
fun atom_const ty = Const (@{const_name "atom"}, atom_ty ty)
fun mk_atom_ty ty t = atom_const ty $ t;
fun mk_atom t = mk_atom_ty (fastype_of t) t;
fun mk_atom_set_ty ty t =
let
val atom_ty = HOLogic.dest_setT ty
val img_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom set"};
in
Const (@{const_name image}, img_ty) $ atom_const atom_ty $ t
end
fun mk_atom_fset_ty ty t =
let
val atom_ty = dest_fsetT ty
val fmap_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom fset"};
in
Const (@{const_name map_fset}, fmap_ty) $ atom_const atom_ty $ t
end
fun mk_atom_list_ty ty t =
let
val atom_ty = dest_listT ty
val map_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom list"}
in
Const (@{const_name map}, map_ty) $ atom_const atom_ty $ t
end
fun mk_atom_set t = mk_atom_set_ty (fastype_of t) t
fun mk_atom_fset t = mk_atom_fset_ty (fastype_of t) t
fun mk_atom_list t = mk_atom_list_ty (fastype_of t) t
(* coerces a list into a set *)
fun to_set_ty ty t =
case ty of
@{typ "atom list"} => @{term "set :: atom list => atom set"} $ t
| @{typ "atom fset"} => @{term "fset :: atom fset => atom set"} $ t
| _ => t
fun to_set t = to_set_ty (fastype_of t) t
(* testing for concrete atom types *)
fun is_atom ctxt ty =
Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})
fun is_atom_set ctxt (Type ("fun", [ty, @{typ bool}])) = is_atom ctxt ty
| is_atom_set _ _ = false;
fun is_atom_fset ctxt (Type (@{type_name "fset"}, [ty])) = is_atom ctxt ty
| is_atom_fset _ _ = false;
fun is_atom_list ctxt (Type (@{type_name "list"}, [ty])) = is_atom ctxt ty
| is_atom_list _ _ = false
(* functions that coerce singletons, sets, fsets and lists of concrete
atoms into general atoms sets / lists *)
fun atomify_ty ctxt ty t =
if is_atom ctxt ty
then mk_atom_ty ty t
else if is_atom_set ctxt ty
then mk_atom_set_ty ty t
else if is_atom_fset ctxt ty
then mk_atom_fset_ty ty t
else if is_atom_list ctxt ty
then mk_atom_list_ty ty t
else raise TERM ("atomify", [t])
fun setify_ty ctxt ty t =
if is_atom ctxt ty
then HOLogic.mk_set @{typ atom} [mk_atom_ty ty t]
else if is_atom_set ctxt ty
then mk_atom_set_ty ty t
else if is_atom_fset ctxt ty
then @{term "fset :: atom fset => atom set"} $ mk_atom_fset_ty ty t
else if is_atom_list ctxt ty
then @{term "set :: atom list => atom set"} $ mk_atom_list_ty ty t
else raise TERM ("setify", [t])
fun listify_ty ctxt ty t =
if is_atom ctxt ty
then HOLogic.mk_list @{typ atom} [mk_atom_ty ty t]
else if is_atom_list ctxt ty
then mk_atom_list_ty ty t
else raise TERM ("listify", [t])
fun atomify ctxt t = atomify_ty ctxt (fastype_of t) t
fun setify ctxt t = setify_ty ctxt (fastype_of t) t
fun listify ctxt t = listify_ty ctxt (fastype_of t) t
fun fresh_star_ty ty = [@{typ "atom set"}, ty] ---> @{typ bool}
fun fresh_star_const ty = Const (@{const_name fresh_star}, fresh_star_ty ty)
fun mk_fresh_star_ty ty t1 t2 = fresh_star_const ty $ t1 $ t2
fun mk_fresh_star t1 t2 = mk_fresh_star_ty (fastype_of t2) t1 t2
fun supp_ty ty = ty --> @{typ "atom set"};
fun supp_const ty = Const (@{const_name supp}, supp_ty ty)
fun mk_supp_ty ty t = supp_const ty $ t
fun mk_supp t = mk_supp_ty (fastype_of t) t
fun supp_rel_ty ty = ([ty, ty] ---> @{typ bool}) --> ty --> @{typ "atom set"};
fun supp_rel_const ty = Const (@{const_name supp_rel}, supp_rel_ty ty)
fun mk_supp_rel_ty ty r t = supp_rel_const ty $ r $ t
fun mk_supp_rel r t = mk_supp_rel_ty (fastype_of t) r t
fun supports_const ty = Const (@{const_name supports}, [@{typ "atom set"}, ty] ---> @{typ bool});
fun mk_supports_ty ty t1 t2 = supports_const ty $ t1 $ t2;
fun mk_supports t1 t2 = mk_supports_ty (fastype_of t2) t1 t2;
fun finite_const ty = Const (@{const_name finite}, ty --> @{typ bool})
fun mk_finite_ty ty t = finite_const ty $ t
fun mk_finite t = mk_finite_ty (fastype_of t) t
fun mk_equiv r = r RS @{thm eq_reflection};
fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r;
(* functions that construct differences, appends and unions
but avoid producing empty atom sets or empty atom lists *)
fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"}
| mk_diff (t1, @{term "{}::atom set"}) = t1
| mk_diff (@{term "set ([]::atom list)"}, _) = @{term "set ([]::atom list)"}
| mk_diff (t1, @{term "set ([]::atom list)"}) = t1
| mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2)
fun mk_append (t1, @{term "[]::atom list"}) = t1
| mk_append (@{term "[]::atom list"}, t2) = t2
| mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2)
fun mk_union (t1, @{term "{}::atom set"}) = t1
| mk_union (@{term "{}::atom set"}, t2) = t2
| mk_union (t1, @{term "set ([]::atom list)"}) = t1
| mk_union (@{term "set ([]::atom list)"}, t2) = t2
| mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2)
fun fold_union trms = fold_rev (curry mk_union) trms @{term "{}::atom set"}
fun fold_append trms = fold_rev (curry mk_append) trms @{term "[]::atom list"}
fun mk_conj (t1, @{term "True"}) = t1
| mk_conj (@{term "True"}, t2) = t2
| mk_conj (t1, t2) = HOLogic.mk_conj (t1, t2)
fun fold_conj trms = fold_rev (curry mk_conj) trms @{term "True"}
(* produces fresh arguments for a term *)
fun fresh_args ctxt f =
f |> fastype_of
|> binder_types
|> map (pair "z")
|> Variable.variant_frees ctxt [f]
|> map Free
(** datatypes **)
(* constructor infos *)
type cns_info = (term * typ * typ list * bool list) list
(* - term for constructor constant
- type of the constructor
- types of the arguments
- flags indicating whether the argument is recursive
*)
(* returns the type of the nth datatype *)
fun all_dtyps descr sorts =
map (fn n => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n)) (0 upto (length descr - 1))
fun nth_dtyp descr sorts n =
Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n);
(* returns info about constructors in a datatype *)
fun all_dtyp_constrs_info descr =
map (fn (_, (ty, vs, constrs)) => map (pair (ty, vs)) constrs) descr
(* returns the constants of the constructors plus the
corresponding type and types of arguments *)
fun all_dtyp_constrs_types descr sorts =
let
fun aux ((ty_name, vs), (cname, args)) =
let
val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs
val ty = Type (ty_name, vs_tys)
val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args
val is_rec = map Datatype_Aux.is_rec_type args
in
(Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec)
end
in
map (map aux) (all_dtyp_constrs_info descr)
end
fun nth_dtyp_constrs_types descr sorts n =
nth (all_dtyp_constrs_types descr sorts) n
(* generates for every datatype a name str ^ dt_name
plus and index for multiple occurences of a string *)
fun prefix_dt_names descr sorts str =
let
fun get_nth_name (i, _) =
Datatype_Aux.name_of_typ (nth_dtyp descr sorts i)
in
Datatype_Prop.indexify_names
(map (prefix str o get_nth_name) descr)
end
(** function package tactics **)
fun pat_completeness_simp simps lthy =
let
val simp_set = HOL_basic_ss addsimps (@{thms sum.inject sum.distinct} @ simps)
in
Pat_Completeness.pat_completeness_tac lthy 1
THEN ALLGOALS (asm_full_simp_tac simp_set)
end
fun prove_termination_tac size_simps ctxt =
let
val natT = @{typ nat}
fun prod_size_const fT sT =
let
val fT_fun = fT --> natT
val sT_fun = sT --> natT
val prodT = Type (@{type_name prod}, [fT, sT])
in
Const (@{const_name prod_size}, [fT_fun, sT_fun, prodT] ---> natT)
end
fun mk_size_measure T =
case T of
(Type (@{type_name Sum_Type.sum}, [fT, sT])) =>
SumTree.mk_sumcase fT sT natT (mk_size_measure fT) (mk_size_measure sT)
| (Type (@{type_name Product_Type.prod}, [fT, sT])) =>
prod_size_const fT sT $ (mk_size_measure fT) $ (mk_size_measure sT)
| _ => HOLogic.size_const T
fun mk_measure_trm T =
HOLogic.dest_setT T
|> fst o HOLogic.dest_prodT
|> mk_size_measure
|> curry (op $) (Const (@{const_name "measure"}, dummyT))
|> Syntax.check_term ctxt
val ss = HOL_ss addsimps @{thms in_measure wf_measure sum.cases add_Suc_right add.right_neutral
zero_less_Suc prod.size(1) mult_Suc_right} @ size_simps
val ss' = ss addsimprocs Nat_Numeral_Simprocs.cancel_numerals
in
Function_Relation.relation_tac ctxt mk_measure_trm
THEN_ALL_NEW simp_tac ss'
end
fun prove_termination size_simps ctxt =
Function.prove_termination NONE
(HEADGOAL (prove_termination_tac size_simps ctxt)) ctxt
(** transformations of premises (in inductive proofs) **)
(*
given the theorem F[t]; proves the theorem F[f t]
- F needs to be monotone
- f returns either SOME for a term it fires on
and NONE elsewhere
*)
fun map_term f t =
(case f t of
NONE => map_term' f t
| x => x)
and map_term' f (t $ u) =
(case (map_term f t, map_term f u) of
(NONE, NONE) => NONE
| (SOME t'', NONE) => SOME (t'' $ u)
| (NONE, SOME u'') => SOME (t $ u'')
| (SOME t'', SOME u'') => SOME (t'' $ u''))
| map_term' f (Abs (s, T, t)) =
(case map_term f t of
NONE => NONE
| SOME t'' => SOME (Abs (s, T, t'')))
| map_term' _ _ = NONE;
fun map_thm_tac ctxt tac thm =
let
val monos = Inductive.get_monos ctxt
val simps = HOL_basic_ss addsimps @{thms split_def}
in
EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
REPEAT_DETERM (FIRSTGOAL (simp_tac simps THEN' resolve_tac monos)),
REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
end
fun map_thm ctxt f tac thm =
let
val opt_goal_trm = map_term f (prop_of thm)
in
case opt_goal_trm of
NONE => thm
| SOME goal =>
Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
end
(*
inductive premises can be of the form
R ... /\ P ...; split_conj_i picks out
the part R or P part
*)
fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f1 else NONE
| _ => NONE)
| split_conj1 _ _ = NONE;
fun split_conj2 names (Const (@{const_name "conj"}, _) $ f1 $ f2) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f2 else NONE
| _ => NONE)
| split_conj2 _ _ = NONE;
fun transform_prem1 ctxt names thm =
map_thm ctxt (split_conj1 names) (etac conjunct1 1) thm
fun transform_prem2 ctxt names thm =
map_thm ctxt (split_conj2 names) (etac conjunct2 1) thm
(* transformes a theorem into one of the object logic *)
val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
end (* structure *)
open Nominal_Library;