ordered raw_bn_info to agree with the order of the raw_bn_functions; started alpha_bn proof
theory Foo1
imports "../Nominal2"
begin
text {*
Contrived example that has more than one
binding function
*}
atom_decl name
nominal_datatype foo: trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let1 a::"assg" t::"trm" bind "bn1 a" in t
| Let2 a::"assg" t::"trm" bind "bn2 a" in t
| Let3 a::"assg" t::"trm" bind "bn3 a" in t
| Let4 a::"assg'" t::"trm" bind (set) "bn4 a" in t
and assg =
As "name" "name" "trm"
and assg' =
BNil
| BAs "name" "assg'"
binder
bn1::"assg \<Rightarrow> atom list" and
bn2::"assg \<Rightarrow> atom list" and
bn3::"assg \<Rightarrow> atom list" and
bn4::"assg' \<Rightarrow> atom set"
where
"bn1 (As x y t) = [atom x]"
| "bn2 (As x y t) = [atom y]"
| "bn3 (As x y t) = [atom x, atom y]"
| "bn4 (BNil) = {}"
| "bn4 (BAs a as) = {atom a} \<union> bn4 as"
thm foo.perm_bn_alpha
thm foo.perm_bn_simps
thm foo.bn_finite
thm foo.distinct
thm foo.induct
thm foo.inducts
thm foo.exhaust
thm foo.fv_defs
thm foo.bn_defs
thm foo.perm_simps
thm foo.eq_iff
thm foo.fv_bn_eqvt
thm foo.size_eqvt
thm foo.supports
thm foo.fsupp
thm foo.supp
thm foo.fresh
thm foo.bn_finite
lemma uu1:
shows "alpha_bn1 as (permute_bn1 p as)"
apply(induct as rule: foo.inducts(2))
apply(auto)[7]
apply(simp add: foo.perm_bn_simps)
apply(simp add: foo.eq_iff)
apply(auto)
done
lemma uu2:
shows "alpha_bn2 as (permute_bn2 p as)"
apply(induct as rule: foo.inducts(2))
apply(auto)[7]
apply(simp add: foo.perm_bn_simps)
apply(simp add: foo.eq_iff)
apply(auto)
done
lemma uu3:
shows "alpha_bn3 as (permute_bn3 p as)"
apply(induct as rule: foo.inducts(2))
apply(auto)[7]
apply(simp add: foo.perm_bn_simps)
apply(simp add: foo.eq_iff)
apply(auto)
done
lemma uu4:
shows "alpha_bn4 as (permute_bn4 p as)"
apply(induct as rule: foo.inducts(3))
apply(auto)[8]
apply(simp add: foo.perm_bn_simps)
apply(simp add: foo.eq_iff)
apply(simp add: foo.perm_bn_simps)
apply(simp add: foo.eq_iff)
done
lemma tt1:
shows "(p \<bullet> bn1 as) = bn1 (permute_bn1 p as)"
apply(induct as rule: foo.inducts(2))
apply(auto)[7]
apply(simp add: foo.perm_bn_simps foo.bn_defs)
apply(simp add: atom_eqvt)
apply(auto)
done
lemma tt2:
shows "(p \<bullet> bn2 as) = bn2 (permute_bn2 p as)"
apply(induct as rule: foo.inducts(2))
apply(auto)[7]
apply(simp add: foo.perm_bn_simps foo.bn_defs)
apply(simp add: atom_eqvt)
apply(auto)
done
lemma tt3:
shows "(p \<bullet> bn3 as) = bn3 (permute_bn3 p as)"
apply(induct as rule: foo.inducts(2))
apply(auto)[7]
apply(simp add: foo.perm_bn_simps foo.bn_defs)
apply(simp add: atom_eqvt)
apply(auto)
done
lemma tt4:
shows "(p \<bullet> bn4 as) = bn4 (permute_bn4 p as)"
apply(induct as rule: foo.inducts(3))
apply(auto)[8]
apply(simp add: foo.perm_bn_simps foo.bn_defs permute_set_eq)
apply(simp add: foo.perm_bn_simps foo.bn_defs)
apply(simp add: atom_eqvt insert_eqvt)
done
lemma Let1_rename:
assumes "supp ([bn1 assn]lst. trm) \<sharp>* p"
shows "Let1 assn trm = Let1 (permute_bn1 p assn) (p \<bullet> trm)"
using assms
apply -
apply(drule supp_perm_eq[symmetric])
apply(simp only: permute_Abs)
apply(simp only: tt1)
apply(simp only: foo.eq_iff)
apply(rule conjI)
apply(rule refl)
apply(rule uu1)
done
lemma Let1_rename_a:
fixes c::"'a::fs"
assumes "y = Let1 assn trm"
shows "\<exists>p. (p \<bullet> (set (bn1 assn))) \<sharp>* c \<and> y = Let1 (permute_bn1 p assn) (p \<bullet> trm)"
using assms
apply(simp only: foo.eq_iff uu1 tt1[symmetric] permute_Abs[symmetric])
apply(simp del: permute_Abs)
sorry
lemma strong_exhaust1:
fixes c::"'a::fs"
assumes "\<exists>name. y = Var name \<Longrightarrow> P"
and "\<exists>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
and "\<exists>name trm. {atom name} \<sharp>* c \<and> y = Lam name trm \<Longrightarrow> P"
and "\<exists>(c::'a::fs) assn trm. set (bn1 assn) \<sharp>* c \<and> y = Let1 assn trm \<Longrightarrow> P"
and "\<exists>(c::'a::fs) assn trm. set (bn2 assn) \<sharp>* c \<and> y = Let2 assn trm \<Longrightarrow> P"
and "\<exists>(c::'a::fs) assn trm. set (bn3 assn) \<sharp>* c \<and> y = Let3 assn trm \<Longrightarrow> P"
and "\<exists>(c::'a::fs) assn' trm. (bn4 assn') \<sharp>* c \<and> y = Let4 assn' trm \<Longrightarrow> P"
shows "P"
apply(rule_tac y="y" in foo.exhaust(1))
apply(rule assms(1))
apply(rule exI)
apply(assumption)
apply(rule assms(2))
apply(rule exI)+
apply(assumption)
apply(rule assms(3))
apply(subgoal_tac "\<exists>p::perm. (p \<bullet> {atom name}) \<sharp>* (c, name, trm)")
apply(erule exE)
apply(perm_simp)
apply(rule_tac exI)+
apply(rule conjI)
apply(simp add: fresh_star_prod)
apply(erule conjE)+
apply(assumption)
apply(simp)
apply(simp add: foo.eq_iff)
(* HERE *)
defer
defer
apply(rule assms(4))
apply(subgoal_tac "\<exists>p::perm. (p \<bullet> (set (bn1 assg))) \<sharp>* (c, assg, trm)")
apply(erule exE)
apply(perm_simp add: tt1)
apply(simp only: fresh_star_prod)
apply(erule conjE)+
apply(rule_tac exI)+
apply(rule conjI)
apply(assumption)
apply(simp add: foo.eq_iff)
apply(rule conjI)
apply(simp only: tt1[symmetric])
defer
apply(rule uu1)
defer
apply(rule assms(5))
apply(subgoal_tac "\<exists>p::perm. (p \<bullet> (set (bn2 assg))) \<sharp>* (c, assg, trm)")
apply(erule exE)
apply(perm_simp add: tt2)
apply(simp only: fresh_star_prod)
apply(erule conjE)+
apply(rule_tac exI)+
apply(rule conjI)
apply(assumption)
apply(simp add: foo.eq_iff)
apply(rule conjI)
apply(simp only: tt2[symmetric])
defer
apply(rule uu2)
defer
apply(rule refl)
apply(subst (asm) fresh_star_supp_conv)
apply(simp)
lemma strong_exhaust2:
fixes c::"'a::fs"
assumes "\<And>name. y = Var name \<Longrightarrow> P"
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn1 assn) \<sharp>* c; y = Let1 assn trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn2 assn) \<sharp>* c; y = Let2 assn trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn3 assn) \<sharp>* c; y = Let3 assn trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn' trm. \<lbrakk>(bn4 assn') \<sharp>* c; y = Let4 assn' trm\<rbrakk> \<Longrightarrow> P"
shows "P"
apply(rule strong_exhaust1[where y="y"])
apply(erule exE)+
apply(rule assms(1))
apply(assumption)
apply(erule exE)+
apply(rule assms(2))
apply(assumption)
apply(erule exE | erule conjE)?
apply(rule assms(3))
apply(drule_tac x="c" in spec)
apply(erule exE | erule conjE)+
apply(assumption)+
apply(drule_tac x="c" in spec)
apply(erule exE | erule conjE)+
apply(assumption)+
apply(erule exE | erule conjE)+
apply(rule assms(4))
apply(assumption)+
apply(erule exE | erule conjE)+
apply(rule assms(5))
apply(assumption)+
apply(erule exE | erule conjE)+
apply(rule assms(6))
apply(assumption)+
apply(erule exE | erule conjE)+
apply(rule assms(7))
apply(assumption)+
done
apply(rule_tac y="y" in foo.exhaust(1))
apply(rule assms(1))
apply(rule exI)
apply(assumption)
apply(rule assms(2))
apply(rule exI)+
apply(assumption)
apply(rule assms(3))
apply(rule_tac p="p" in permute_boolE)
apply(perm_simp)
apply(simp)
apply(subgoal_tac "\<exists>q. (q \<bullet> {atom name}) \<sharp>* c \<and> supp (Lam name trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(rule assms(3))
apply(perm_simp)
apply(assumption)
apply(simp)
apply(drule supp_perm_eq[symmetric])
apply(perm_simp)
apply(simp)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: foo.fresh fresh_star_def)
apply(drule Let1_rename_a)
apply(erule exE)
apply(erule conjE)
apply(rule assms(4))
apply(simp only: set_eqvt tt1)
apply(assumption)
(*
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn2 assg))) \<sharp>* c \<and> supp ([bn2 assg]lst.trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
*)
thm assms(5)
apply(rule assms(5))
prefer 2
apply(clarify)
unfolding foo.eq_iff
apply
lemma strong_exhaust1:
fixes c::"'a::fs"
assumes "\<And>name. y = Var name \<Longrightarrow> P"
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn1 assn) \<sharp>* c; y = Let1 assn trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn2 assn) \<sharp>* c; y = Let2 assn trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn3 assn) \<sharp>* c; y = Let3 assn trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn' trm. \<lbrakk>(bn4 assn') \<sharp>* c; y = Let4 assn' trm\<rbrakk> \<Longrightarrow> P"
shows "P"
apply(rule_tac y="y" in foo.exhaust(1))
apply(rule assms(1))
apply(assumption)
apply(rule assms(2))
apply(assumption)
apply(subgoal_tac "\<exists>q. (q \<bullet> {atom name}) \<sharp>* c \<and> supp (Lam name trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(rule assms(3))
apply(perm_simp)
apply(assumption)
apply(simp)
apply(drule supp_perm_eq[symmetric])
apply(perm_simp)
apply(simp)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: foo.fresh fresh_star_def)
apply(drule Let1_rename_a)
apply(erule exE)
apply(erule conjE)
apply(rule assms(4))
apply(simp only: set_eqvt tt1)
apply(assumption)
(*
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn2 assg))) \<sharp>* c \<and> supp ([bn2 assg]lst.trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
*)
thm assms(5)
apply(rule assms(5))
prefer 2
apply(clarify)
unfolding foo.eq_iff
apply(rule conjI)
prefer 2
apply(rule uu2)
apply(simp only: tt2[symmetric])
prefer 2
apply(simp only: tt2[symmetric])
apply(simp_all only:)[2]
apply(simp add: set_eqvt)
apply(simp add: tt2)
apply(simp add: foo.eq_iff)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(simp add: tt2 uu2)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: Abs_fresh_star)
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn3 assg))) \<sharp>* c \<and> supp ([bn3 assg]lst.trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(rule assms(6))
apply(simp add: set_eqvt)
apply(simp add: tt3)
apply(simp add: foo.eq_iff)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(simp add: tt3 uu3)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: Abs_fresh_star)
apply(subgoal_tac "\<exists>q. (q \<bullet> (bn4 assg')) \<sharp>* c \<and> supp ([bn4 assg']set.trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(rule assms(7))
apply(simp add: tt4)
apply(simp add: foo.eq_iff)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(simp add: tt4 uu4)
apply(rule at_set_avoiding2)
apply(simp add: foo.bn_finite)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: Abs_fresh_star)
done
thm strong_exhaust1 foo.exhaust(1)
lemma strong_exhaust2:
assumes "\<And>x y t. as = As x y t \<Longrightarrow> P"
shows "P"
apply(rule_tac y="as" in foo.exhaust(2))
apply(rule assms(1))
apply(assumption)
done
lemma strong_exhaust3:
assumes "as' = BNil \<Longrightarrow> P"
and "\<And>a as. as' = BAs a as \<Longrightarrow> P"
shows "P"
apply(rule_tac y="as'" in foo.exhaust(3))
apply(rule assms(1))
apply(assumption)
apply(rule assms(2))
apply(assumption)
done
lemma
fixes t::trm
and as::assg
and as'::assg'
and c::"'a::fs"
assumes a1: "\<And>x c. P1 c (Var x)"
and a2: "\<And>t1 t2 c. \<lbrakk>\<And>d. P1 d t1; \<And>d. P1 d t2\<rbrakk> \<Longrightarrow> P1 c (App t1 t2)"
and a3: "\<And>x t c. \<lbrakk>{atom x} \<sharp>* c; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Lam x t)"
and a4: "\<And>as t c. \<lbrakk>set (bn1 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let1 as t)"
and a5: "\<And>as t c. \<lbrakk>set (bn2 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let2 as t)"
and a6: "\<And>as t c. \<lbrakk>set (bn3 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let3 as t)"
and a7: "\<And>as' t c. \<lbrakk>(bn4 as') \<sharp>* c; \<And>d. P3 d as'; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let4 as' t)"
and a8: "\<And>x y t c. \<And>d. P1 d t \<Longrightarrow> P2 c (As x y t)"
and a9: "\<And>c. P3 c (BNil)"
and a10: "\<And>c a as. \<And>d. P3 d as \<Longrightarrow> P3 c (BAs a as)"
shows "P1 c t" "P2 c as" "P3 c as'"
using assms
apply(induction_schema)
apply(rule_tac y="t" and c="c" in strong_exhaust1)
apply(simp_all)[7]
apply(rule_tac as="as" in strong_exhaust2)
apply(simp)
apply(rule_tac as'="as'" in strong_exhaust3)
apply(simp_all)[2]
apply(relation "measure (sum_case (size o snd) (sum_case (\<lambda>y. size (snd y)) (\<lambda>z. size (snd z))))")
apply(simp_all add: foo.size)
done
end