(* Nominal Function Core
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 14 January 2011)
Core of the nominal function package.
*)
signature NOMINAL_FUNCTION_CORE =
sig
val trace: bool Unsynchronized.ref
val prepare_nominal_function : Nominal_Function_Common.nominal_function_config
-> string (* defname *)
-> ((bstring * typ) * mixfix) list (* defined symbol *)
-> ((bstring * typ) list * term list * term * term) list (* specification *)
-> local_theory
-> (term (* f *)
* term (* G(raph) *)
* thm list (* GIntros *)
* thm (* Ginduct *)
* thm (* goalstate *)
* (thm -> Nominal_Function_Common.nominal_function_result) (* continuation *)
) * local_theory
val inductive_def : (binding * typ) * mixfix -> term list -> local_theory
-> (term * thm list * thm * thm) * local_theory
end
structure Nominal_Function_Core : NOMINAL_FUNCTION_CORE =
struct
val trace = Unsynchronized.ref false
fun trace_msg msg = if ! trace then tracing (msg ()) else ()
val boolT = HOLogic.boolT
val mk_eq = HOLogic.mk_eq
open Function_Lib
open Function_Common
open Nominal_Function_Common
datatype globals = Globals of
{fvar: term,
domT: typ,
ranT: typ,
h: term,
y: term,
x: term,
z: term,
a: term,
P: term,
D: term,
Pbool:term}
datatype rec_call_info = RCInfo of
{RIvs: (string * typ) list, (* Call context: fixes and assumes *)
CCas: thm list,
rcarg: term, (* The recursive argument *)
llRI: thm,
h_assum: term}
datatype clause_context = ClauseContext of
{ctxt : Proof.context,
qs : term list,
gs : term list,
lhs: term,
rhs: term,
cqs: cterm list,
ags: thm list,
case_hyp : thm}
fun transfer_clause_ctx thy (ClauseContext { ctxt, qs, gs, lhs, rhs, cqs, ags, case_hyp }) =
ClauseContext { ctxt = Proof_Context.transfer thy ctxt,
qs = qs, gs = gs, lhs = lhs, rhs = rhs, cqs = cqs, ags = ags, case_hyp = case_hyp }
datatype clause_info = ClauseInfo of
{no: int,
qglr : ((string * typ) list * term list * term * term),
cdata : clause_context,
tree: Function_Ctx_Tree.ctx_tree,
lGI: thm,
RCs: rec_call_info list}
(* Theory dependencies. *)
val acc_induct_rule = @{thm accp_induct_rule}
val ex1_implies_ex = @{thm FunDef.fundef_ex1_existence}
val ex1_implies_un = @{thm FunDef.fundef_ex1_uniqueness}
val ex1_implies_iff = @{thm FunDef.fundef_ex1_iff}
val acc_downward = @{thm accp_downward}
val accI = @{thm accp.accI}
val case_split = @{thm HOL.case_split}
val fundef_default_value = @{thm FunDef.fundef_default_value}
val not_acc_down = @{thm not_accp_down}
fun find_calls tree =
let
fun add_Ri (fixes,assumes) (_ $ arg) _ (_, xs) =
([], (fixes, assumes, arg) :: xs)
| add_Ri _ _ _ _ = raise Match
in
rev (Function_Ctx_Tree.traverse_tree add_Ri tree [])
end
(* nominal *)
fun mk_eqvt_at (f_trm, arg_trm) =
let
val f_ty = fastype_of f_trm
val arg_ty = domain_type f_ty
in
Const (@{const_name eqvt_at}, [f_ty, arg_ty] ---> @{typ bool}) $ f_trm $ arg_trm
|> HOLogic.mk_Trueprop
end
fun mk_eqvt trm =
let
val ty = fastype_of trm
in
Const (@{const_name eqvt}, ty --> @{typ bool}) $ trm
|> HOLogic.mk_Trueprop
end
fun mk_inv inv (f_trm, arg_trm) =
betapplys (inv, [arg_trm, (f_trm $ arg_trm)])
|> HOLogic.mk_Trueprop
fun mk_invariant (Globals {x, y, ...}) G invariant =
let
val prem = HOLogic.mk_Trueprop (G $ x $ y)
val concl = HOLogic.mk_Trueprop (betapplys (invariant, [x, y]))
in
Logic.mk_implies (prem, concl)
|> mk_forall_rename ("y", y)
|> mk_forall_rename ("x", x)
end
(** building proof obligations *)
fun mk_eqvt_proof_obligation qs fvar (vs, assms, arg) =
mk_eqvt_at (fvar, arg)
|> curry Logic.list_implies (map prop_of assms)
|> fold_rev (Logic.all o Free) vs
|> fold_rev absfree qs
|> strip_abs_body
fun mk_inv_proof_obligation inv qs fvar (vs, assms, arg) =
mk_inv inv (fvar, arg)
|> curry Logic.list_implies (map prop_of assms)
|> fold_rev (Logic.all o Free) vs
|> fold_rev absfree qs
|> strip_abs_body
(** building proof obligations *)
fun mk_compat_proof_obligations domT ranT fvar f RCss inv glrs =
let
fun mk_impl (((qs, gs, lhs, rhs), RCs_lhs), ((qs', gs', lhs', rhs'), RCs_rhs)) =
let
val shift = incr_boundvars (length qs')
val eqvts_obligations_lhs = map (shift o mk_eqvt_proof_obligation qs fvar) RCs_lhs
val eqvts_obligations_rhs = map (mk_eqvt_proof_obligation qs' fvar) RCs_rhs
val invs_obligations_lhs = map (shift o mk_inv_proof_obligation inv qs fvar) RCs_lhs
val invs_obligations_rhs = map (mk_inv_proof_obligation inv qs' fvar) RCs_rhs
in
Logic.mk_implies
(HOLogic.mk_Trueprop (HOLogic.eq_const domT $ shift lhs $ lhs'),
HOLogic.mk_Trueprop (HOLogic.eq_const ranT $ shift rhs $ rhs'))
|> fold_rev (curry Logic.mk_implies) (map shift gs @ gs')
|> fold_rev (curry Logic.mk_implies) invs_obligations_rhs (* nominal *)
|> fold_rev (curry Logic.mk_implies) invs_obligations_lhs (* nominal *)
|> fold_rev (curry Logic.mk_implies) eqvts_obligations_rhs (* nominal *)
|> fold_rev (curry Logic.mk_implies) eqvts_obligations_lhs (* nominal *)
|> fold_rev (fn (n,T) => fn b => Logic.all_const T $ Abs(n,T,b)) (qs @ qs')
|> curry abstract_over fvar
|> curry subst_bound f
end
in
map mk_impl (unordered_pairs (glrs ~~ RCss))
end
fun mk_completeness (Globals {x, Pbool, ...}) clauses qglrs =
let
fun mk_case (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) =
HOLogic.mk_Trueprop Pbool
|> curry Logic.mk_implies (HOLogic.mk_Trueprop (mk_eq (x, lhs)))
|> fold_rev (curry Logic.mk_implies) gs
|> fold_rev mk_forall_rename (map fst oqs ~~ qs)
in
HOLogic.mk_Trueprop Pbool
|> fold_rev (curry Logic.mk_implies o mk_case) (clauses ~~ qglrs)
|> mk_forall_rename ("x", x)
|> mk_forall_rename ("P", Pbool)
end
(** making a context with it's own local bindings **)
fun mk_clause_context x ctxt (pre_qs,pre_gs,pre_lhs,pre_rhs) =
let
val (qs, ctxt') = Variable.variant_fixes (map fst pre_qs) ctxt
|>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs
val thy = Proof_Context.theory_of ctxt'
fun inst t = subst_bounds (rev qs, t)
val gs = map inst pre_gs
val lhs = inst pre_lhs
val rhs = inst pre_rhs
val cqs = map (cterm_of thy) qs
val ags = map (Thm.assume o cterm_of thy) gs
val case_hyp = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (x, lhs))))
in
ClauseContext { ctxt = ctxt', qs = qs, gs = gs, lhs = lhs, rhs = rhs,
cqs = cqs, ags = ags, case_hyp = case_hyp }
end
(* lowlevel term function. FIXME: remove *)
fun abstract_over_list vs body =
let
fun abs lev v tm =
if v aconv tm then Bound lev
else
(case tm of
Abs (a, T, t) => Abs (a, T, abs (lev + 1) v t)
| t $ u => abs lev v t $ abs lev v u
| t => t)
in
fold_index (fn (i, v) => fn t => abs i v t) vs body
end
fun mk_clause_info globals G f no cdata qglr tree RCs GIntro_thm RIntro_thms =
let
val Globals {h, ...} = globals
val ClauseContext { ctxt, qs, cqs, ags, ... } = cdata
val cert = Thm.cterm_of (Proof_Context.theory_of ctxt)
(* Instantiate the GIntro thm with "f" and import into the clause context. *)
val lGI = GIntro_thm
|> Thm.forall_elim (cert f)
|> fold Thm.forall_elim cqs
|> fold Thm.elim_implies ags
fun mk_call_info (rcfix, rcassm, rcarg) RI =
let
val llRI = RI
|> fold Thm.forall_elim cqs
|> fold (Thm.forall_elim o cert o Free) rcfix
|> fold Thm.elim_implies ags
|> fold Thm.elim_implies rcassm
val h_assum =
HOLogic.mk_Trueprop (G $ rcarg $ (h $ rcarg))
|> fold_rev (curry Logic.mk_implies o prop_of) rcassm
|> fold_rev (Logic.all o Free) rcfix
|> Pattern.rewrite_term (Proof_Context.theory_of ctxt) [(f, h)] []
|> abstract_over_list (rev qs)
in
RCInfo {RIvs=rcfix, rcarg=rcarg, CCas=rcassm, llRI=llRI, h_assum=h_assum}
end
val RC_infos = map2 mk_call_info RCs RIntro_thms
in
ClauseInfo {no=no, cdata=cdata, qglr=qglr, lGI=lGI, RCs=RC_infos,
tree=tree}
end
fun store_compat_thms 0 thms = []
| store_compat_thms n thms =
let
val (thms1, thms2) = chop n thms
in
(thms1 :: store_compat_thms (n - 1) thms2)
end
(* expects i <= j *)
fun lookup_compat_thm i j cts =
nth (nth cts (i - 1)) (j - i)
(* nominal *)
(* Returns "Gsi, Gsj, lhs_i = lhs_j |-- rhs_j_f = rhs_i_f" *)
(* if j < i, then turn around *)
fun get_compat_thm thy cts eqvtsi eqvtsj invsi invsj i j ctxi ctxj =
let
val ClauseContext {cqs=cqsi,ags=agsi,lhs=lhsi,case_hyp=case_hypi,...} = ctxi
val ClauseContext {cqs=cqsj,ags=agsj,lhs=lhsj,case_hyp=case_hypj,...} = ctxj
val lhsi_eq_lhsj = cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj)))
in if j < i then
let
val compat = lookup_compat_thm j i cts
in
compat (* "!!qj qi. Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
|> fold Thm.forall_elim (cqsj @ cqsi) (* "Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
|> fold Thm.elim_implies eqvtsj (* nominal *)
|> fold Thm.elim_implies eqvtsi (* nominal *)
|> fold Thm.elim_implies invsj (* nominal *)
|> fold Thm.elim_implies invsi (* nominal *)
|> fold Thm.elim_implies agsj
|> fold Thm.elim_implies agsi
|> Thm.elim_implies ((Thm.assume lhsi_eq_lhsj) RS sym) (* "Gsj, Gsi, lhsi = lhsj |-- rhsj = rhsi" *)
end
else
let
val compat = lookup_compat_thm i j cts
in
compat (* "!!qi qj. Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
|> fold Thm.forall_elim (cqsi @ cqsj) (* "Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
|> fold Thm.elim_implies eqvtsi (* nominal *)
|> fold Thm.elim_implies eqvtsj (* nominal *)
|> fold Thm.elim_implies invsi (* nominal *)
|> fold Thm.elim_implies invsj (* nominal *)
|> fold Thm.elim_implies agsi
|> fold Thm.elim_implies agsj
|> Thm.elim_implies (Thm.assume lhsi_eq_lhsj)
|> (fn thm => thm RS sym) (* "Gsi, Gsj, lhsi = lhsj |-- rhsj = rhsi" *)
end
end
(* Generates the replacement lemma in fully quantified form. *)
fun mk_replacement_lemma thy h ih_elim clause =
let
val ClauseInfo {cdata=ClauseContext {qs, lhs, cqs, ags, case_hyp, ...},
RCs, tree, ...} = clause
local open Conv in
val ih_conv = arg1_conv o arg_conv o arg_conv
end
val ih_elim_case =
Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_elim
val Ris = map (fn RCInfo {llRI, ...} => llRI) RCs
val h_assums = map (fn RCInfo {h_assum, ...} =>
Thm.assume (cterm_of thy (subst_bounds (rev qs, h_assum)))) RCs
val (eql, _) =
Function_Ctx_Tree.rewrite_by_tree thy h ih_elim_case (Ris ~~ h_assums) tree
val replace_lemma = (eql RS meta_eq_to_obj_eq)
|> Thm.implies_intr (cprop_of case_hyp)
|> fold_rev (Thm.implies_intr o cprop_of) h_assums
|> fold_rev (Thm.implies_intr o cprop_of) ags
|> fold_rev Thm.forall_intr cqs
|> Thm.close_derivation
in
replace_lemma
end
(* nominal *)
(* Generates the eqvt lemmas for each clause *)
fun mk_eqvt_lemma thy ih_eqvt clause =
let
val ClauseInfo {cdata=ClauseContext {cqs, ags, case_hyp, ...}, RCs, ...} = clause
local open Conv in
val ih_conv = arg1_conv o arg_conv o arg_conv
end
val ih_eqvt_case =
Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_eqvt
fun prep_eqvt (RCInfo {llRI, RIvs, CCas, ...}) =
(llRI RS ih_eqvt_case)
|> fold_rev (Thm.implies_intr o cprop_of) CCas
|> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
in
map prep_eqvt RCs
|> map (fold_rev (Thm.implies_intr o cprop_of) ags)
|> map (Thm.implies_intr (cprop_of case_hyp))
|> map (fold_rev Thm.forall_intr cqs)
|> map (Thm.close_derivation)
end
(* nominal *)
fun mk_invariant_lemma thy ih_inv clause =
let
val ClauseInfo {cdata=ClauseContext {cqs, ags, case_hyp, ...}, RCs, ...} = clause
local open Conv in
val ih_conv = arg1_conv o arg_conv o arg_conv
end
val ih_inv_case =
Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_inv
fun prep_inv (RCInfo {llRI, RIvs, CCas, ...}) =
(llRI RS ih_inv_case)
|> fold_rev (Thm.implies_intr o cprop_of) CCas
|> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
in
map prep_inv RCs
|> map (fold_rev (Thm.implies_intr o cprop_of) ags)
|> map (Thm.implies_intr (cprop_of case_hyp))
|> map (fold_rev Thm.forall_intr cqs)
|> map (Thm.close_derivation)
end
(* nominal *)
fun mk_uniqueness_clause thy globals compat_store eqvts invs clausei clausej RLj =
let
val Globals {h, y, x, fvar, ...} = globals
val ClauseInfo {no=i, cdata=cctxi as ClauseContext {ctxt=ctxti, lhs=lhsi, case_hyp, cqs = cqsi,
ags = agsi, ...}, ...} = clausei
val ClauseInfo {no=j, qglr=cdescj, RCs=RCsj, ...} = clausej
val cctxj as ClauseContext {ags = agsj', lhs = lhsj', rhs = rhsj', qs = qsj', cqs = cqsj', ...} =
mk_clause_context x ctxti cdescj
val rhsj'h = Pattern.rewrite_term thy [(fvar,h)] [] rhsj'
val Ghsj' = map
(fn RCInfo {h_assum, ...} => Thm.assume (cterm_of thy (subst_bounds (rev qsj', h_assum)))) RCsj
val y_eq_rhsj'h = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (y, rhsj'h))))
val lhsi_eq_lhsj' = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj'))))
(* lhs_i = lhs_j' |-- lhs_i = lhs_j' *)
val case_hypj' = trans OF [case_hyp, lhsi_eq_lhsj']
val RLj_import = RLj
|> fold Thm.forall_elim cqsj'
|> fold Thm.elim_implies agsj'
|> fold Thm.elim_implies Ghsj'
val eqvtsi = nth eqvts (i - 1)
|> map (fold Thm.forall_elim cqsi)
|> map (fold Thm.elim_implies [case_hyp])
|> map (fold Thm.elim_implies agsi)
val eqvtsj = nth eqvts (j - 1)
|> map (fold Thm.forall_elim cqsj')
|> map (fold Thm.elim_implies [case_hypj'])
|> map (fold Thm.elim_implies agsj')
val invsi = nth invs (i - 1)
|> map (fold Thm.forall_elim cqsi)
|> map (fold Thm.elim_implies [case_hyp])
|> map (fold Thm.elim_implies agsi)
val invsj = nth invs (j - 1)
|> map (fold Thm.forall_elim cqsj')
|> map (fold Thm.elim_implies [case_hypj'])
|> map (fold Thm.elim_implies agsj')
val compat = get_compat_thm thy compat_store eqvtsi eqvtsj invsi invsj i j cctxi cctxj
in
(trans OF [case_hyp, lhsi_eq_lhsj']) (* lhs_i = lhs_j' |-- x = lhs_j' *)
|> Thm.implies_elim RLj_import
(* Rj1' ... Rjk', lhs_i = lhs_j' |-- rhs_j'_h = rhs_j'_f *)
|> (fn it => trans OF [it, compat])
(* lhs_i = lhs_j', Gj', Rj1' ... Rjk' |-- rhs_j'_h = rhs_i_f *)
|> (fn it => trans OF [y_eq_rhsj'h, it])
(* lhs_i = lhs_j', Gj', Rj1' ... Rjk', y = rhs_j_h' |-- y = rhs_i_f *)
|> fold_rev (Thm.implies_intr o cprop_of) Ghsj'
|> fold_rev (Thm.implies_intr o cprop_of) agsj'
(* lhs_i = lhs_j' , y = rhs_j_h' |-- Gj', Rj1'...Rjk' ==> y = rhs_i_f *)
|> Thm.implies_intr (cprop_of y_eq_rhsj'h)
|> Thm.implies_intr (cprop_of lhsi_eq_lhsj')
|> fold_rev Thm.forall_intr (cterm_of thy h :: cqsj')
end
(* nominal *)
fun mk_uniqueness_case thy globals G f ihyp ih_intro G_cases compat_store clauses replems eqvtlems invlems
clausei =
let
val Globals {x, y, ranT, fvar, ...} = globals
val ClauseInfo {cdata = ClauseContext {lhs, rhs, cqs, ags, case_hyp, ...}, lGI, RCs, ...} = clausei
val rhsC = Pattern.rewrite_term thy [(fvar, f)] [] rhs
val ih_intro_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ih_intro
fun prep_RC (RCInfo {llRI, RIvs, CCas, ...}) =
(llRI RS ih_intro_case)
|> fold_rev (Thm.implies_intr o cprop_of) CCas
|> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
val existence = fold (curry op COMP o prep_RC) RCs lGI
val P = cterm_of thy (mk_eq (y, rhsC))
val G_lhs_y = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (G $ lhs $ y)))
val unique_clauses =
map2 (mk_uniqueness_clause thy globals compat_store eqvtlems invlems clausei) clauses replems
fun elim_implies_eta A AB =
Thm.compose_no_flatten true (A, 0) 1 AB |> Seq.list_of |> the_single
val uniqueness = G_cases
|> Thm.forall_elim (cterm_of thy lhs)
|> Thm.forall_elim (cterm_of thy y)
|> Thm.forall_elim P
|> Thm.elim_implies G_lhs_y
|> fold elim_implies_eta unique_clauses
|> Thm.implies_intr (cprop_of G_lhs_y)
|> Thm.forall_intr (cterm_of thy y)
val P2 = cterm_of thy (lambda y (G $ lhs $ y)) (* P2 y := (lhs, y): G *)
val exactly_one =
ex1I |> instantiate' [SOME (ctyp_of thy ranT)] [SOME P2, SOME (cterm_of thy rhsC)]
|> curry (op COMP) existence
|> curry (op COMP) uniqueness
|> simplify (HOL_basic_ss addsimps [case_hyp RS sym])
|> Thm.implies_intr (cprop_of case_hyp)
|> fold_rev (Thm.implies_intr o cprop_of) ags
|> fold_rev Thm.forall_intr cqs
val function_value =
existence
|> Thm.implies_intr ihyp
|> Thm.implies_intr (cprop_of case_hyp)
|> Thm.forall_intr (cterm_of thy x)
|> Thm.forall_elim (cterm_of thy lhs)
|> curry (op RS) refl
in
(exactly_one, function_value)
end
(* nominal *)
fun prove_stuff ctxt globals G f R clauses complete compat compat_store G_elim G_eqvt invariant f_def =
let
val Globals {h, domT, ranT, x, ...} = globals
val thy = Proof_Context.theory_of ctxt
(* Inductive Hypothesis: !!z. (z,x):R ==> EX!y. (z,y):G *)
val ihyp = Logic.all_const domT $ Abs ("z", domT,
Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
HOLogic.mk_Trueprop (Const (@{const_name Ex1}, (ranT --> boolT) --> boolT) $
Abs ("y", ranT, G $ Bound 1 $ Bound 0))))
|> cterm_of thy
val ihyp_thm = Thm.assume ihyp |> Thm.forall_elim_vars 0
val ih_intro = ihyp_thm RS (f_def RS ex1_implies_ex)
val ih_elim = ihyp_thm RS (f_def RS ex1_implies_un)
|> instantiate' [] [NONE, SOME (cterm_of thy h)]
val ih_eqvt = ihyp_thm RS (G_eqvt RS (f_def RS @{thm fundef_ex1_eqvt_at}))
val ih_inv = ihyp_thm RS (invariant COMP (f_def RS @{thm fundef_ex1_prop}))
val _ = trace_msg (K "Proving Replacement lemmas...")
val repLemmas = map (mk_replacement_lemma thy h ih_elim) clauses
val _ = trace_msg (K "Proving Equivariance lemmas...")
val eqvtLemmas = map (mk_eqvt_lemma thy ih_eqvt) clauses
val _ = trace_msg (K "Proving Invariance lemmas...")
val invLemmas = map (mk_invariant_lemma thy ih_inv) clauses
val _ = trace_msg (K "Proving cases for unique existence...")
val (ex1s, values) =
split_list (map (mk_uniqueness_case thy globals G f
ihyp ih_intro G_elim compat_store clauses repLemmas eqvtLemmas invLemmas) clauses)
val _ = trace_msg (K "Proving: Graph is a function")
val graph_is_function = complete
|> Thm.forall_elim_vars 0
|> fold (curry op COMP) ex1s
|> Thm.implies_intr (ihyp)
|> Thm.implies_intr (cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ x)))
|> Thm.forall_intr (cterm_of thy x)
|> (fn it => Drule.compose_single (it, 2, acc_induct_rule)) (* "EX! y. (?x,y):G" *)
|> (fn it => fold (Thm.forall_intr o cterm_of thy o Var) (Term.add_vars (prop_of it) []) it)
val goalstate =
Conjunction.intr (Conjunction.intr (Conjunction.intr graph_is_function complete) invariant) G_eqvt
|> Thm.close_derivation
|> Goal.protect
|> fold_rev (Thm.implies_intr o cprop_of) compat
|> Thm.implies_intr (cprop_of complete)
|> Thm.implies_intr (cprop_of invariant)
|> Thm.implies_intr (cprop_of G_eqvt)
in
(goalstate, values)
end
(* wrapper -- restores quantifiers in rule specifications *)
fun inductive_def (binding as ((R, T), _)) intrs lthy =
let
val ({intrs = intrs_gen, elims = [elim_gen], preds = [ Rdef ], induct, raw_induct, ...}, lthy) =
lthy
|> Local_Theory.conceal
|> Inductive.add_inductive_i
{quiet_mode = true,
verbose = ! trace,
alt_name = Binding.empty,
coind = false,
no_elim = false,
no_ind = false,
skip_mono = true,
fork_mono = false}
[binding] (* relation *)
[] (* no parameters *)
(map (fn t => (Attrib.empty_binding, t)) intrs) (* intro rules *)
[] (* no special monos *)
||> Local_Theory.restore_naming lthy
val cert = cterm_of (Proof_Context.theory_of lthy)
fun requantify orig_intro thm =
let
val (qs, t) = dest_all_all orig_intro
val frees = Variable.add_frees lthy t [] |> remove (op =) (Binding.name_of R, T)
val vars = Term.add_vars (prop_of thm) []
val varmap = AList.lookup (op =) (frees ~~ map fst vars)
#> the_default ("",0)
in
fold_rev (fn Free (n, T) =>
forall_intr_rename (n, cert (Var (varmap (n, T), T)))) qs thm
end
in
((Rdef, map2 requantify intrs intrs_gen, forall_intr_vars elim_gen, induct), lthy)
end
(* nominal *)
fun define_graph Gname fvar domT ranT clauses RCss lthy =
let
val GT = domT --> ranT --> boolT
val (Gvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Gname, GT)
fun mk_GIntro (ClauseContext {qs, gs, lhs, rhs, ...}) RCs =
let
fun mk_h_assm (rcfix, rcassm, rcarg) =
HOLogic.mk_Trueprop (Free Gvar $ rcarg $ (fvar $ rcarg))
|> fold_rev (curry Logic.mk_implies o prop_of) rcassm
|> fold_rev (Logic.all o Free) rcfix
in
HOLogic.mk_Trueprop (Free Gvar $ lhs $ rhs)
|> fold_rev (curry Logic.mk_implies o mk_h_assm) RCs
|> fold_rev (curry Logic.mk_implies) gs
|> fold_rev Logic.all (fvar :: qs)
end
val G_intros = map2 mk_GIntro clauses RCss
in
inductive_def ((Binding.name n, T), NoSyn) G_intros lthy
end
fun define_function fdefname (fname, mixfix) domT ranT G default lthy =
let
val f_def =
Abs ("x", domT, Const (@{const_name FunDef.THE_default}, ranT --> (ranT --> boolT) --> ranT)
$ (default $ Bound 0) $ Abs ("y", ranT, G $ Bound 1 $ Bound 0))
|> Syntax.check_term lthy
in
Local_Theory.define
((Binding.name (function_name fname), mixfix),
((Binding.conceal (Binding.name fdefname), []), f_def)) lthy
end
(* nominal *)
fun define_recursion_relation Rname domT qglrs clauses RCss lthy =
let
val RT = domT --> domT --> boolT
val (Rvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Rname, RT)
fun mk_RIntro (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) (rcfix, rcassm, rcarg) =
HOLogic.mk_Trueprop (Free Rvar $ rcarg $ lhs)
|> fold_rev (curry Logic.mk_implies o prop_of) rcassm
|> fold_rev (curry Logic.mk_implies) gs
|> fold_rev (Logic.all o Free) rcfix
|> fold_rev mk_forall_rename (map fst oqs ~~ qs)
(* "!!qs xs. CS ==> G => (r, lhs) : R" *)
val R_intross = map2 (map o mk_RIntro) (clauses ~~ qglrs) RCss
val ((R, RIntro_thms, R_elim, _), lthy) =
inductive_def ((Binding.name n, T), NoSyn) (flat R_intross) lthy
in
((R, Library.unflat R_intross RIntro_thms, R_elim), lthy)
end
fun fix_globals domT ranT fvar ctxt =
let
val ([h, y, x, z, a, D, P, Pbool],ctxt') = Variable.variant_fixes
["h_fd", "y_fd", "x_fd", "z_fd", "a_fd", "D_fd", "P_fd", "Pb_fd"] ctxt
in
(Globals {h = Free (h, domT --> ranT),
y = Free (y, ranT),
x = Free (x, domT),
z = Free (z, domT),
a = Free (a, domT),
D = Free (D, domT --> boolT),
P = Free (P, domT --> boolT),
Pbool = Free (Pbool, boolT),
fvar = fvar,
domT = domT,
ranT = ranT},
ctxt')
end
fun inst_RC thy fvar f (rcfix, rcassm, rcarg) =
let
fun inst_term t = subst_bound(f, abstract_over (fvar, t))
in
(rcfix, map (Thm.assume o cterm_of thy o inst_term o prop_of) rcassm, inst_term rcarg)
end
(**********************************************************
* PROVING THE RULES
**********************************************************)
fun mk_psimps thy globals R clauses valthms f_iff graph_is_function =
let
val Globals {domT, z, ...} = globals
fun mk_psimp (ClauseInfo {qglr = (oqs, _, _, _), cdata = ClauseContext {cqs, lhs, ags, ...}, ...}) valthm =
let
val lhs_acc = cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ lhs)) (* "acc R lhs" *)
val z_smaller = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ lhs)) (* "R z lhs" *)
in
((Thm.assume z_smaller) RS ((Thm.assume lhs_acc) RS acc_downward))
|> (fn it => it COMP graph_is_function)
|> Thm.implies_intr z_smaller
|> Thm.forall_intr (cterm_of thy z)
|> (fn it => it COMP valthm)
|> Thm.implies_intr lhs_acc
|> asm_simplify (HOL_basic_ss addsimps [f_iff])
|> fold_rev (Thm.implies_intr o cprop_of) ags
|> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
end
in
map2 mk_psimp clauses valthms
end
(** Induction rule **)
val acc_subset_induct = @{thm predicate1I} RS @{thm accp_subset_induct}
fun mk_partial_induct_rule thy globals R complete_thm clauses =
let
val Globals {domT, x, z, a, P, D, ...} = globals
val acc_R = mk_acc domT R
val x_D = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (D $ x)))
val a_D = cterm_of thy (HOLogic.mk_Trueprop (D $ a))
val D_subset = cterm_of thy (Logic.all x
(Logic.mk_implies (HOLogic.mk_Trueprop (D $ x), HOLogic.mk_Trueprop (acc_R $ x))))
val D_dcl = (* "!!x z. [| x: D; (z,x):R |] ==> z:D" *)
Logic.all x (Logic.all z (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x),
Logic.mk_implies (HOLogic.mk_Trueprop (R $ z $ x),
HOLogic.mk_Trueprop (D $ z)))))
|> cterm_of thy
(* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
val ihyp = Logic.all_const domT $ Abs ("z", domT,
Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
HOLogic.mk_Trueprop (P $ Bound 0)))
|> cterm_of thy
val aihyp = Thm.assume ihyp
fun prove_case clause =
let
val ClauseInfo {cdata = ClauseContext {ctxt, qs, cqs, ags, gs, lhs, case_hyp, ...},
RCs, qglr = (oqs, _, _, _), ...} = clause
val case_hyp_conv = K (case_hyp RS eq_reflection)
local open Conv in
val lhs_D = fconv_rule (arg_conv (arg_conv (case_hyp_conv))) x_D
val sih =
fconv_rule (Conv.binder_conv
(K (arg1_conv (arg_conv (arg_conv case_hyp_conv)))) ctxt) aihyp
end
fun mk_Prec (RCInfo {llRI, RIvs, CCas, rcarg, ...}) = sih
|> Thm.forall_elim (cterm_of thy rcarg)
|> Thm.elim_implies llRI
|> fold_rev (Thm.implies_intr o cprop_of) CCas
|> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
val P_recs = map mk_Prec RCs (* [P rec1, P rec2, ... ] *)
val step = HOLogic.mk_Trueprop (P $ lhs)
|> fold_rev (curry Logic.mk_implies o prop_of) P_recs
|> fold_rev (curry Logic.mk_implies) gs
|> curry Logic.mk_implies (HOLogic.mk_Trueprop (D $ lhs))
|> fold_rev mk_forall_rename (map fst oqs ~~ qs)
|> cterm_of thy
val P_lhs = Thm.assume step
|> fold Thm.forall_elim cqs
|> Thm.elim_implies lhs_D
|> fold Thm.elim_implies ags
|> fold Thm.elim_implies P_recs
val res = cterm_of thy (HOLogic.mk_Trueprop (P $ x))
|> Conv.arg_conv (Conv.arg_conv case_hyp_conv)
|> Thm.symmetric (* P lhs == P x *)
|> (fn eql => Thm.equal_elim eql P_lhs) (* "P x" *)
|> Thm.implies_intr (cprop_of case_hyp)
|> fold_rev (Thm.implies_intr o cprop_of) ags
|> fold_rev Thm.forall_intr cqs
in
(res, step)
end
val (cases, steps) = split_list (map prove_case clauses)
val istep = complete_thm
|> Thm.forall_elim_vars 0
|> fold (curry op COMP) cases (* P x *)
|> Thm.implies_intr ihyp
|> Thm.implies_intr (cprop_of x_D)
|> Thm.forall_intr (cterm_of thy x)
val subset_induct_rule =
acc_subset_induct
|> (curry op COMP) (Thm.assume D_subset)
|> (curry op COMP) (Thm.assume D_dcl)
|> (curry op COMP) (Thm.assume a_D)
|> (curry op COMP) istep
|> fold_rev Thm.implies_intr steps
|> Thm.implies_intr a_D
|> Thm.implies_intr D_dcl
|> Thm.implies_intr D_subset
val simple_induct_rule =
subset_induct_rule
|> Thm.forall_intr (cterm_of thy D)
|> Thm.forall_elim (cterm_of thy acc_R)
|> assume_tac 1 |> Seq.hd
|> (curry op COMP) (acc_downward
|> (instantiate' [SOME (ctyp_of thy domT)]
(map (SOME o cterm_of thy) [R, x, z]))
|> Thm.forall_intr (cterm_of thy z)
|> Thm.forall_intr (cterm_of thy x))
|> Thm.forall_intr (cterm_of thy a)
|> Thm.forall_intr (cterm_of thy P)
in
simple_induct_rule
end
(* FIXME: broken by design *)
fun mk_domain_intro ctxt (Globals {domT, ...}) R R_cases clause =
let
val thy = Proof_Context.theory_of ctxt
val ClauseInfo {cdata = ClauseContext {gs, lhs, cqs, ...},
qglr = (oqs, _, _, _), ...} = clause
val goal = HOLogic.mk_Trueprop (mk_acc domT R $ lhs)
|> fold_rev (curry Logic.mk_implies) gs
|> cterm_of thy
in
Goal.init goal
|> (SINGLE (resolve_tac [accI] 1)) |> the
|> (SINGLE (eresolve_tac [Thm.forall_elim_vars 0 R_cases] 1)) |> the
|> (SINGLE (auto_tac ctxt)) |> the
|> Goal.conclude
|> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
end
(** Termination rule **)
val wf_induct_rule = @{thm Wellfounded.wfP_induct_rule}
val wf_in_rel = @{thm FunDef.wf_in_rel}
val in_rel_def = @{thm FunDef.in_rel_def}
fun mk_nest_term_case thy globals R' ihyp clause =
let
val Globals {z, ...} = globals
val ClauseInfo {cdata = ClauseContext {qs, cqs, ags, lhs, case_hyp, ...}, tree,
qglr=(oqs, _, _, _), ...} = clause
val ih_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ihyp
fun step (fixes, assumes) (_ $ arg) u (sub,(hyps,thms)) =
let
val used = (u @ sub)
|> map (fn (ctx,thm) => Function_Ctx_Tree.export_thm thy ctx thm)
val hyp = HOLogic.mk_Trueprop (R' $ arg $ lhs)
|> fold_rev (curry Logic.mk_implies o prop_of) used (* additional hyps *)
|> Function_Ctx_Tree.export_term (fixes, assumes)
|> fold_rev (curry Logic.mk_implies o prop_of) ags
|> fold_rev mk_forall_rename (map fst oqs ~~ qs)
|> cterm_of thy
val thm = Thm.assume hyp
|> fold Thm.forall_elim cqs
|> fold Thm.elim_implies ags
|> Function_Ctx_Tree.import_thm thy (fixes, assumes)
|> fold Thm.elim_implies used (* "(arg, lhs) : R'" *)
val z_eq_arg = HOLogic.mk_Trueprop (mk_eq (z, arg))
|> cterm_of thy |> Thm.assume
val acc = thm COMP ih_case
val z_acc_local = acc
|> Conv.fconv_rule
(Conv.arg_conv (Conv.arg_conv (K (Thm.symmetric (z_eq_arg RS eq_reflection)))))
val ethm = z_acc_local
|> Function_Ctx_Tree.export_thm thy (fixes,
z_eq_arg :: case_hyp :: ags @ assumes)
|> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
val sub' = sub @ [(([],[]), acc)]
in
(sub', (hyp :: hyps, ethm :: thms))
end
| step _ _ _ _ = raise Match
in
Function_Ctx_Tree.traverse_tree step tree
end
fun mk_nest_term_rule thy globals R R_cases clauses =
let
val Globals { domT, x, z, ... } = globals
val acc_R = mk_acc domT R
val R' = Free ("R", fastype_of R)
val Rrel = Free ("R", HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
val inrel_R = Const (@{const_name FunDef.in_rel},
HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)) --> fastype_of R) $ Rrel
val wfR' = HOLogic.mk_Trueprop (Const (@{const_name Wellfounded.wfP},
(domT --> domT --> boolT) --> boolT) $ R')
|> cterm_of thy (* "wf R'" *)
(* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
val ihyp = Logic.all_const domT $ Abs ("z", domT,
Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
HOLogic.mk_Trueprop (acc_R $ Bound 0)))
|> cterm_of thy
val ihyp_a = Thm.assume ihyp |> Thm.forall_elim_vars 0
val R_z_x = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ x))
val (hyps, cases) = fold (mk_nest_term_case thy globals R' ihyp_a) clauses ([], [])
in
R_cases
|> Thm.forall_elim (cterm_of thy z)
|> Thm.forall_elim (cterm_of thy x)
|> Thm.forall_elim (cterm_of thy (acc_R $ z))
|> curry op COMP (Thm.assume R_z_x)
|> fold_rev (curry op COMP) cases
|> Thm.implies_intr R_z_x
|> Thm.forall_intr (cterm_of thy z)
|> (fn it => it COMP accI)
|> Thm.implies_intr ihyp
|> Thm.forall_intr (cterm_of thy x)
|> (fn it => Drule.compose_single(it,2,wf_induct_rule))
|> curry op RS (Thm.assume wfR')
|> forall_intr_vars
|> (fn it => it COMP allI)
|> fold Thm.implies_intr hyps
|> Thm.implies_intr wfR'
|> Thm.forall_intr (cterm_of thy R')
|> Thm.forall_elim (cterm_of thy (inrel_R))
|> curry op RS wf_in_rel
|> full_simplify (HOL_basic_ss addsimps [in_rel_def])
|> Thm.forall_intr (cterm_of thy Rrel)
end
(* nominal *)
fun prepare_nominal_function config defname [((fname, fT), mixfix)] abstract_qglrs lthy =
let
val NominalFunctionConfig {domintros, default=default_opt, inv=invariant_opt,...} = config
val default_str = the_default "%x. undefined" default_opt (*FIXME dynamic scoping*)
val invariant_str = the_default "%x y. True" invariant_opt
val fvar = Free (fname, fT)
val domT = domain_type fT
val ranT = range_type fT
val default = Syntax.parse_term lthy default_str
|> Type.constraint fT |> Syntax.check_term lthy
val invariant_trm = Syntax.parse_term lthy invariant_str
|> Type.constraint ([domT, ranT] ---> @{typ bool}) |> Syntax.check_term lthy
val (globals, ctxt') = fix_globals domT ranT fvar lthy
val Globals { x, h, ... } = globals
val clauses = map (mk_clause_context x ctxt') abstract_qglrs
val n = length abstract_qglrs
fun build_tree (ClauseContext { ctxt, rhs, ...}) =
Function_Ctx_Tree.mk_tree (fname, fT) h ctxt rhs
val trees = map build_tree clauses
val RCss = map find_calls trees
val ((G, GIntro_thms, G_elim, G_induct), lthy) =
PROFILE "def_graph" (define_graph (graph_name defname) fvar domT ranT clauses RCss) lthy
val ((f, (_, f_defthm)), lthy) =
PROFILE "def_fun" (define_function (defname ^ "_sumC_def") (fname, mixfix) domT ranT G default) lthy
val RCss = map (map (inst_RC (Proof_Context.theory_of lthy) fvar f)) RCss
val trees = map (Function_Ctx_Tree.inst_tree (Proof_Context.theory_of lthy) fvar f) trees
val ((R, RIntro_thmss, R_elim), lthy) =
PROFILE "def_rel" (define_recursion_relation (rel_name defname) domT abstract_qglrs clauses RCss) lthy
val (_, lthy) =
Local_Theory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy
val newthy = Proof_Context.theory_of lthy
val clauses = map (transfer_clause_ctx newthy) clauses
val cert = cterm_of (Proof_Context.theory_of lthy)
val xclauses = PROFILE "xclauses"
(map7 (mk_clause_info globals G f) (1 upto n) clauses abstract_qglrs trees
RCss GIntro_thms) RIntro_thmss
val complete =
mk_completeness globals clauses abstract_qglrs |> cert |> Thm.assume
val compat =
mk_compat_proof_obligations domT ranT fvar f RCss invariant_trm abstract_qglrs
|> map (cert #> Thm.assume)
val G_eqvt = mk_eqvt G |> cert |> Thm.assume
val invariant = mk_invariant globals G invariant_trm |> cert |> Thm.assume
val compat_store = store_compat_thms n compat
val (goalstate, values) = PROFILE "prove_stuff"
(prove_stuff lthy globals G f R xclauses complete compat
compat_store G_elim G_eqvt invariant) f_defthm
fun mk_partial_rules provedgoal =
let
val newthy = theory_of_thm provedgoal (*FIXME*)
val ((graph_is_function, complete_thm), graph_is_eqvt) =
provedgoal
|> Conjunction.elim
|>> fst o Conjunction.elim
|>> Conjunction.elim
|>> apfst (Thm.forall_elim_vars 0)
val f_iff = graph_is_function RS (f_defthm RS ex1_implies_iff)
val f_eqvt = graph_is_function RS (graph_is_eqvt RS (f_defthm RS @{thm fundef_ex1_eqvt}))
val psimps = PROFILE "Proving simplification rules"
(mk_psimps newthy globals R xclauses values f_iff) graph_is_function
val simple_pinduct = PROFILE "Proving partial induction rule"
(mk_partial_induct_rule newthy globals R complete_thm) xclauses
val total_intro = PROFILE "Proving nested termination rule"
(mk_nest_term_rule newthy globals R R_elim) xclauses
val dom_intros =
if domintros then SOME (PROFILE "Proving domain introduction rules"
(map (mk_domain_intro lthy globals R R_elim)) xclauses)
else NONE
in
NominalFunctionResult {fs=[f], G=G, R=R, cases=complete_thm,
psimps=psimps, simple_pinducts=[simple_pinduct],
termination=total_intro, domintros=dom_intros, eqvts=[f_eqvt]}
end
in
((f, G, GIntro_thms, G_induct, goalstate, mk_partial_rules), lthy)
end
end