Trying to prove equivariance.
lemma in_fun:
shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
by (simp add: mem_def)
lemma respects_thm:
shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
unfolding Respects_def
by (simp add: expand_fun_eq)
lemma respects_rep_abs:
assumes a: "Quotient R1 Abs1 Rep1"
and b: "Respects (R1 ===> R2) f"
and c: "R1 x x"
shows "R2 (f (Rep1 (Abs1 x))) (f x)"
using a b[simplified respects_thm] c unfolding Quotient_def
by blast
lemma respects_mp:
assumes a: "Respects (R1 ===> R2) f"
and b: "R1 x y"
shows "R2 (f x) (f y)"
using a b unfolding Respects_def
by simp
lemma respects_o:
assumes a: "Respects (R2 ===> R3) f"
and b: "Respects (R1 ===> R2) g"
shows "Respects (R1 ===> R3) (f o g)"
using a b unfolding Respects_def
by simp
lemma fun_rel_eq_rel:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
\<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
by blast
lemma let_babs:
"v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
by (simp add: Babs_def)
lemma fun_rel_equals:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and r1: "Respects (R1 ===> R2) f"
and r2: "Respects (R1 ===> R2) g"
shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
apply(rule_tac iffI)
apply(rule)+
apply (rule apply_rsp'[of "R1" "R2"])
apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]])
apply auto
using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
apply (metis let_rsp q1)
apply (metis fun_rel_eq_rel let_rsp q1 q2 r2)
using r1 unfolding Respects_def expand_fun_eq
apply(simp (no_asm_use))
apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
done
(* ask Peter: fun_rel_IMP used twice *)
lemma fun_rel_IMP2:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and r1: "Respects (R1 ===> R2) f"
and r2: "Respects (R1 ===> R2) g"
and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
using q1 q2 r1 r2 a
by (simp add: fun_rel_equals)
lemma lambda_rep_abs_rsp:
assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
using r1 r2 by auto
(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
lemma id_prs:
assumes q: "Quotient R Abs Rep"
shows "Abs (id (Rep e)) = id e"
using Quotient_abs_rep[OF q] by auto
lemma id_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R e1 e2"
shows "R (id e1) (id e2)"
using a by auto