(* Title: nominal_eqvt.ML
Author: Stefan Berghofer (original code)
Author: Christian Urban
Automatic proofs for equivariance of inductive predicates.
*)
signature NOMINAL_EQVT =
sig
val equivariance: string -> Proof.context -> local_theory
val eqvt_rel_tac: Proof.context -> string list -> term -> thm -> thm list -> int -> tactic
val eqvt_rel_case_tac: Proof.context -> string list -> term -> thm -> int -> tactic
end
structure Nominal_Eqvt : NOMINAL_EQVT =
struct
open Nominal_Permeq;
open Nominal_ThmDecls;
val atomize_conv =
MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE))
(HOL_basic_ss addsimps @{thms induct_atomize});
val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv);
fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1
(Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt));
(**
proves F[f t] from F[t] which is the given theorem
- F needs to be monotone
- f returns either SOME for a term it fires
and NONE elsewhere
**)
fun map_term f t =
(case f t of
NONE => map_term' f t
| x => x)
and map_term' f (t $ u) =
(case (map_term f t, map_term f u) of
(NONE, NONE) => NONE
| (SOME t'', NONE) => SOME (t'' $ u)
| (NONE, SOME u'') => SOME (t $ u'')
| (SOME t'', SOME u'') => SOME (t'' $ u''))
| map_term' f (Abs (s, T, t)) =
(case map_term f t of
NONE => NONE
| SOME t'' => SOME (Abs (s, T, t'')))
| map_term' _ _ = NONE;
fun map_thm_tac ctxt tac thm =
let
val monos = Inductive.get_monos ctxt
in
EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
REPEAT_DETERM (FIRSTGOAL (resolve_tac monos)),
REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
end
fun map_thm ctxt f tac thm =
let
val opt_goal_trm = map_term f (prop_of thm)
in
case opt_goal_trm of
NONE => thm
| SOME goal =>
Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
end
(*
inductive premises can be of the form
R ... /\ P ...; split_conj picks out
the part P ...
*)
fun transform_prem ctxt names thm =
let
fun split_conj names (Const ("op &", _) $ p $ q) =
(case head_of p of
Const (name, _) => if name mem names then SOME q else NONE
| _ => NONE)
| split_conj _ _ = NONE;
in
map_thm ctxt (split_conj names) (etac conjunct2 1) thm
end
(** equivariance tactics **)
fun eqvt_rel_case_tac ctxt pred_names pi intro =
let
val thy = ProofContext.theory_of ctxt
val cpi = Thm.cterm_of thy (mk_minus pi)
val rule = Drule.instantiate' [] [SOME cpi] @{thm permute_boolE}
val permute_cancel = @{thms permute_minus_cancel(2)}
in
eqvt_strict_tac ctxt [] [] THEN'
SUBPROOF (fn {prems, context, ...} =>
let
val prems' = map (transform_prem ctxt pred_names) prems
val side_cond_tac = EVERY'
[ rtac rule, eqvt_strict_tac context permute_cancel [],
resolve_tac prems' ]
in
(rtac intro THEN_ALL_NEW (resolve_tac prems' ORELSE' side_cond_tac)) 1
end) ctxt
end
fun eqvt_rel_tac ctxt pred_names pi induct intros =
let
val cases = map (eqvt_rel_case_tac ctxt pred_names pi) intros
in
EVERY' (rtac induct :: cases)
end
(** equivariance procedure *)
(* sets up goal and makes sure parameters
are untouched PROBLEM: this violates the
form of eqvt lemmas *)
fun prepare_goal params_no pi pred =
let
val (c, xs) = strip_comb pred;
val (xs1, xs2) = chop params_no xs
in
HOLogic.mk_imp (pred, list_comb (c, xs1 @ map (mk_perm pi) xs2))
end
(* stores thm under name.eqvt and adds [eqvt]-attribute *)
fun note_named_thm (name, thm) ctxt =
let
val thm_name = Binding.qualified_name
(Long_Name.qualify (Long_Name.base_name name) "eqvt")
val attr = Attrib.internal (K eqvt_add)
in
Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
end
fun equivariance pred_name ctxt =
let
val thy = ProofContext.theory_of ctxt
val ({names, ...}, {raw_induct, intrs, ...}) =
Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
val raw_induct = atomize_induct ctxt raw_induct
val intros = map atomize_intr intrs
val params_no = length (Inductive.params_of raw_induct)
val (([raw_concl], [raw_pi]), ctxt') = ctxt
|> Variable.import_terms false [concl_of raw_induct]
||>> Variable.variant_fixes ["p"]
val pi = Free (raw_pi, @{typ perm})
val preds = map (fst o HOLogic.dest_imp)
(HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
val goal = HOLogic.mk_Trueprop
(foldr1 HOLogic.mk_conj (map (prepare_goal params_no pi) preds))
val thms = Datatype_Aux.split_conj_thm (Goal.prove ctxt' [] [] goal
(fn {context,...} => eqvt_rel_tac context names pi raw_induct intros 1)
|> singleton (ProofContext.export ctxt' ctxt))
val thms' = map (fn th => zero_var_indexes (th RS mp)) thms
in
ctxt |> fold_map note_named_thm (names ~~ thms') |> snd
end
local structure P = OuterParse and K = OuterKeyword in
val _ =
OuterSyntax.local_theory "equivariance"
"prove equivariance for inductive predicate involving nominal datatypes"
K.thy_decl (P.xname >> equivariance);
end;
end (* structure *)