(*<*)
theory Paper
imports "Quotient"
"LaTeXsugar"
begin
notation (latex output)
fun_rel ("_ ===> _" [51, 51] 50)
(*>*)
section {* Introduction *}
text {*
Isabelle is a generic theorem prover in which many logics can be implemented.
The most widely used one, however, is
Higher-Order Logic (HOL). This logic consists of a small number of
axioms and inference
rules over a simply-typed term-language. Safe reasoning in HOL is ensured by two very restricted
mechanisms for extending the logic: one is the definition of new constants
in terms of existing ones; the other is the introduction of new types
by identifying non-empty subsets in existing types. It is well understood
to use both mechanism for dealing with quotient constructions in HOL (cite Larry).
For example the integers in Isabelle/HOL are constructed by a quotient construction over
the type @{typ "nat \<times> nat"} and the equivalence relation
@{text [display] "(n\<^isub>1, n\<^isub>2) \<approx> (m\<^isub>1, m\<^isub>2) \<equiv> n\<^isub>1 - n \<^isub>2 = m\<^isub>1 - m \<^isub>2"}
\noindent
The problem is that one
*}
subsection {* Contributions *}
text {*
We present the detailed lifting procedure, which was not shown before.
The quotient package presented in this paper has the following
advantages over existing packages:
\begin{itemize}
\item We define quotient composition, function map composition and
relation map composition. This lets lifting polymorphic types with
subtypes quotiented as well. We extend the notions of
respectfullness and preservation to cope with quotient
composition.
\item We allow lifting only some occurrences of quotiented
types. Rsp/Prs extended. (used in nominal)
\item We regularize more thanks to new lemmas. (inductions in
nominal).
\item The quotient package is very modular. Definitions can be added
separately, rsp and prs can be proved separately and theorems can
be lifted on a need basis. (useful with type-classes).
\item Can be used both manually (attribute, separate tactics,
rsp/prs databases) and programatically (automated definition of
lifted constants, the rsp proof obligations and theorem statement
translation according to given quotients).
\end{itemize}
*}
section {* Quotient Type*}
text {*
Defintion of quotient,
Equivalence,
Relation map and function map
*}
section {* Constants *}
text {*
Rep and Abs, Rsp and Prs
*}
section {* Lifting Theorems *}
text {* TBD *}
text {* Why providing a statement to prove is necessary is some cases *}
subsection {* Regularization *}
text {*
Transformation of the theorem statement:
\begin{itemize}
\item Quantifiers and abstractions involving raw types replaced by bounded ones.
\item Equalities involving raw types replaced by bounded ones.
\end{itemize}
The procedure.
Example of non-regularizable theorem ($0 = 1$).
New regularization lemmas:
\begin{lemma}
If @{term R2} is an equivalence relation, then:
\begin{eqnarray}
@{thm (rhs) ball_reg_eqv_range[no_vars]} & = & @{thm (lhs) ball_reg_eqv_range[no_vars]}\\
@{thm (rhs) bex_reg_eqv_range[no_vars]} & = & @{thm (lhs) bex_reg_eqv_range[no_vars]}
\end{eqnarray}
\end{lemma}
*}
subsection {* Injection *}
subsection {* Cleaning *}
text {* Preservation of quantifiers, abstractions, relations, quotient-constants
(definitions) and user given constant preservation lemmas *}
section {* Examples *}
section {* Related Work *}
text {*
\begin{itemize}
\item Peter Homeier's package (and related work from there), John
Harrison's one.
\item Manually defined quotients in Isabelle/HOL Library (Larry's
quotients, Markus's Quotient\_Type, Dixon's FSet, \ldots)
\item Oscar Slotosch defines quotient-type automatically but no
lifting.
\item PER. And how to avoid it.
\item Necessity of Hilbert Choice op.
\item Setoids in Coq
\end{itemize}
*}
(*<*)
end
(*>*)