theory Nominal2_FSet
imports "../Nominal-General/Nominal2_Base"
"../Nominal-General/Nominal2_Eqvt"
FSet
begin
lemma permute_fset_rsp[quot_respect]:
shows "(op = ===> list_eq ===> list_eq) permute permute"
by (simp add: set_eqvt[symmetric])
instantiation fset :: (pt) pt
begin
quotient_definition
"permute_fset :: perm \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list"
instance
proof
fix x :: "'a fset" and p q :: "perm"
show "0 \<bullet> x = x" by (descending) (simp)
show "(p + q) \<bullet> x = p \<bullet> q \<bullet> x" by (descending) (simp)
qed
end
lemma permute_fset[simp, eqvt]:
fixes S::"('a::pt) fset"
shows "(p \<bullet> {||}) = ({||} ::('a::pt) fset)"
and "(p \<bullet> insert_fset x S) = insert_fset (p \<bullet> x) (p \<bullet> S)"
by (lifting permute_list.simps)
lemma map_fset_eqvt[eqvt]:
shows "p \<bullet> (map_fset f S) = map_fset (p \<bullet> f) (p \<bullet> S)"
by (lifting map_eqvt)
lemma fset_eqvt[eqvt]:
shows "p \<bullet> (fset S) = fset (p \<bullet> S)"
by (lifting set_eqvt)
lemma supp_fset [simp]:
shows "supp (fset S) = supp S"
unfolding supp_def
by (perm_simp) (simp add: fset_cong)
lemma supp_empty_fset [simp]:
shows "supp {||} = {}"
unfolding supp_def
by simp
lemma supp_insert_fset [simp]:
fixes x::"'a::fs"
and S::"'a fset"
shows "supp (insert_fset x S) = supp x \<union> supp S"
apply(subst supp_fset[symmetric])
apply(simp add: supp_fset supp_of_fin_insert)
done
lemma fset_finite_supp:
fixes S::"('a::fs) fset"
shows "finite (supp S)"
by (induct S) (simp_all add: finite_supp)
subsection {* finite sets are fs-types *}
instance fset :: (fs) fs
apply (default)
apply (rule fset_finite_supp)
done
lemma atom_map_fset_cong:
shows "map_fset atom x = map_fset atom y \<longleftrightarrow> x = y"
apply(rule inj_map_fset_cong)
apply(simp add: inj_on_def)
done
lemma supp_map_fset_atom:
shows "supp (map_fset atom S) = supp S"
unfolding supp_def
apply(perm_simp)
apply(simp add: atom_map_fset_cong)
done
lemma supp_at_fset:
fixes S::"('a::at_base) fset"
shows "supp S = fset (map_fset atom S)"
apply (induct S)
apply (simp add: supp_empty_fset)
apply (simp add: supp_insert_fset)
apply (simp add: supp_at_base)
done
lemma fresh_star_atom:
fixes a::"'a::at_base"
shows "fset S \<sharp>* a \<Longrightarrow> atom a \<sharp> fset S"
apply (induct S)
apply (simp add: fresh_set_empty)
apply simp
apply (unfold fresh_def)
apply (simp add: supp_of_fin_insert)
apply (rule conjI)
apply (unfold fresh_star_def)
apply simp
apply (unfold fresh_def)
apply (simp add: supp_at_base supp_atom)
apply clarify
apply auto
done
end