With restricted_nominal=1, exp7 and exp8 work. Not sure about proving bn_rsp there.
theory SigmaEx
imports Nominal "../Quotient" "../Quotient_List" "../Quotient_Product"
begin
atom_decl name
datatype robj =
rVar "name"
| rObj "(string \<times> rmethod) list"
| rInv "robj" "string"
| rUpd "robj" "string" "rmethod"
and rmethod =
rSig "name" "robj"
inductive
alpha_obj :: "robj \<Rightarrow> robj \<Rightarrow> bool" ("_ \<approx>o _" [100, 100] 100)
and alpha_method :: "rmethod \<Rightarrow> rmethod \<Rightarrow> bool" ("_ \<approx>m _" [100, 100] 100)
where
a1: "a = b \<Longrightarrow> (rVar a) \<approx>o (rVar b)"
| a2: "rObj [] \<approx>o rObj []"
| a3: "rObj t1 \<approx>o rObj t2 \<Longrightarrow> m1 \<approx>m r2 \<Longrightarrow> rObj ((l1, m1) # t1) \<approx>o rObj ((l2, m2) # t2)"
| a4: "x \<approx>o y \<Longrightarrow> rInv x l1 \<approx>o rInv y l2"
| a5: "\<exists>pi::name prm. (rfv t - {a} = rfv s - {b} \<and> (rfv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx>o s \<and> (pi \<bullet> a) = b)
\<Longrightarrow> rSig a t \<approx>m rSig b s"
lemma alpha_equivps:
shows "equivp alpha_obj"
and "equivp alpha_method"
sorry
quotient_type
obj = robj / alpha_obj
and method = rmethod / alpha_method
by (auto intro: alpha_equivps)
quotient_definition
"Var :: name \<Rightarrow> obj"
is
"rVar"
quotient_definition
"Obj :: (string \<times> method) list \<Rightarrow> obj"
is
"rObj"
quotient_definition
"Inv :: obj \<Rightarrow> string \<Rightarrow> obj"
is
"rInv"
quotient_definition
"Upd :: obj \<Rightarrow> string \<Rightarrow> method \<Rightarrow> obj"
is
"rUpd"
quotient_definition
"Sig :: name \<Rightarrow> obj \<Rightarrow> method"
is
"rSig"
overloading
perm_obj \<equiv> "perm :: 'x prm \<Rightarrow> obj \<Rightarrow> obj" (unchecked)
perm_method \<equiv> "perm :: 'x prm \<Rightarrow> method \<Rightarrow> method" (unchecked)
begin
quotient_definition
"perm_obj :: 'x prm \<Rightarrow> obj \<Rightarrow> obj"
is
"(perm::'x prm \<Rightarrow> robj \<Rightarrow> robj)"
quotient_definition
"perm_method :: 'x prm \<Rightarrow> method \<Rightarrow> method"
is
"(perm::'x prm \<Rightarrow> rmethod \<Rightarrow> rmethod)"
end
lemma tolift:
"\<forall> fvar.
\<forall> fobj\<in>Respects (op = ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
\<forall> fnvk\<in>Respects (op = ===> alpha_obj ===> op =).
\<forall> fupd\<in>Respects (op = ===> op = ===> alpha_obj ===> op = ===> alpha_method ===> op =).
\<forall> fcns\<in>Respects (op = ===> op = ===> prod_rel (op =) alpha_method ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
\<forall> fnil.
\<forall> fpar\<in>Respects (op = ===> op = ===> alpha_method ===> op =).
\<forall> fsgm\<in>Respects (op = ===> (op = ===> alpha_obj) ===> op =).
Ex1 (\<lambda>x.
(x \<in> (Respects (prod_rel (alpha_obj ===> op =)
(prod_rel (list_rel (prod_rel (op =) alpha_method) ===> op =)
(prod_rel ((prod_rel (op =) alpha_method) ===> op =)
(alpha_method ===> op =)
)
)))) \<and>
(\<lambda> (hom_o\<Colon>robj \<Rightarrow> 'a, hom_d\<Colon>(char list \<times> rmethod) list \<Rightarrow> 'b, hom_e\<Colon>char list \<times> rmethod \<Rightarrow> 'c, hom_m\<Colon>rmethod \<Rightarrow> 'd).
((\<forall>x. hom_o (rVar x) = fvar x) \<and>
(\<forall>d. hom_o (rObj d) = fobj (hom_d d) d) \<and>
(\<forall>a l. hom_o (rInv a l) = fnvk (hom_o a) a l) \<and>
(\<forall>a l m. hom_o (rUpd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
(\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
(hom_d [] = fnil) \<and>
(\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
(\<forall>x a. hom_m (rSig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)) x) "
sorry
lemma test_to: "Ex1 (\<lambda>x. (x \<in> (Respects alpha_obj)) \<and> P x)"
ML_prf {* prop_of (#goal (Isar.goal ())) *}
sorry
lemma test_tod: "Ex1 (P :: obj \<Rightarrow> bool)"
apply (lifting test_to)
done
(*syntax
"_expttrn" :: "pttrn => bool => bool" ("(3\<exists>\<exists> _./ _)" [0, 10] 10)
translations
"\<exists>\<exists> x. P" == "Ex (%x. P)"
*)
lemma rvar_rsp[quot_respect]: "(op = ===> alpha_obj) rVar rVar"
by (simp add: a1)
lemma robj_rsp[quot_respect]: "(list_rel (prod_rel op = alpha_method) ===> alpha_obj) rObj rObj"
sorry
lemma rinv_rsp[quot_respect]: "(alpha_obj ===> op = ===> alpha_obj) rInv rInv"
sorry
lemma rupd_rsp[quot_respect]: "(alpha_obj ===> op = ===> alpha_method ===> alpha_obj) rUpd rUpd"
sorry
lemma rsig_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_method) rSig rSig"
sorry
lemma operm_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_obj) op \<bullet> op \<bullet>"
sorry
lemma bex1_bex1reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
apply (simp add: Ex1_def Bex1_rel_def in_respects)
apply clarify
apply auto
apply (rule bexI)
apply assumption
apply (simp add: in_respects)
apply (simp add: in_respects)
apply auto
done
lemma liftd: "
Ex1 (\<lambda>(hom_o, hom_d, hom_e, hom_m).
(\<forall>x. hom_o (Var x) = fvar x) \<and>
(\<forall>d. hom_o (Obj d) = fobj (hom_d d) d) \<and>
(\<forall>a l. hom_o (Inv a l) = fnvk (hom_o a) a l) \<and>
(\<forall>a l m. hom_o (Upd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
(\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
(hom_d [] = fnil) \<and>
(\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
(\<forall>x a. hom_m (Sig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
apply (lifting tolift)
done
lemma tolift':
"\<forall> fvar.
\<forall> fobj\<in>Respects (op = ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
\<forall> fnvk\<in>Respects (op = ===> alpha_obj ===> op =).
\<forall> fupd\<in>Respects (op = ===> op = ===> alpha_obj ===> op = ===> alpha_method ===> op =).
\<forall> fcns\<in>Respects (op = ===> op = ===> prod_rel (op =) alpha_method ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
\<forall> fnil.
\<forall> fpar\<in>Respects (op = ===> op = ===> alpha_method ===> op =).
\<forall> fsgm\<in>Respects (op = ===> (op = ===> alpha_obj) ===> op =).
\<exists> hom_o\<Colon>robj \<Rightarrow> 'a \<in> Respects (alpha_obj ===> op =).
\<exists> hom_d\<Colon>(char list \<times> rmethod) list \<Rightarrow> 'b \<in> Respects (list_rel (prod_rel (op =) alpha_method) ===> op =).
\<exists> hom_e\<Colon>char list \<times> rmethod \<Rightarrow> 'c \<in> Respects ((prod_rel (op =) alpha_method) ===> op =).
\<exists> hom_m\<Colon>rmethod \<Rightarrow> 'd \<in> Respects (alpha_method ===> op =).
(
(\<forall>x. hom_o (rVar x) = fvar x) \<and>
(\<forall>d. hom_o (rObj d) = fobj (hom_d d) d) \<and>
(\<forall>a l. hom_o (rInv a l) = fnvk (hom_o a) a l) \<and>
(\<forall>a l m. hom_o (rUpd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
(\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
(hom_d [] = fnil) \<and>
(\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
(\<forall>x a. hom_m (rSig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
sorry
lemma liftd': "
\<exists>hom_o. \<exists>hom_d. \<exists>hom_e. \<exists>hom_m.
(
(\<forall>x. hom_o (Var x) = fvar x) \<and>
(\<forall>d. hom_o (Obj d) = fobj (hom_d d) d) \<and>
(\<forall>a l. hom_o (Inv a l) = fnvk (hom_o a) a l) \<and>
(\<forall>a l m. hom_o (Upd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
(\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
(hom_d [] = fnil) \<and>
(\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
(\<forall>x a. hom_m (Sig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
apply (lifting tolift')
done
lemma tolift'':
"\<forall> fvar.
\<forall> fobj\<in>Respects (op = ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
\<forall> fnvk\<in>Respects (op = ===> alpha_obj ===> op =).
\<forall> fupd\<in>Respects (op = ===> op = ===> alpha_obj ===> op = ===> alpha_method ===> op =).
\<forall> fcns\<in>Respects (op = ===> op = ===> prod_rel (op =) alpha_method ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
\<forall> fnil.
\<forall> fpar\<in>Respects (op = ===> op = ===> alpha_method ===> op =).
\<forall> fsgm\<in>Respects (op = ===> (op = ===> alpha_obj) ===> op =).
Bex1_rel (alpha_obj ===> op =) (\<lambda>hom_o\<Colon>robj \<Rightarrow> 'a .
Bex1_rel (list_rel (prod_rel (op =) alpha_method) ===> op =) (\<lambda>hom_d\<Colon>(char list \<times> rmethod) list \<Rightarrow> 'b.
Bex1_rel ((prod_rel (op =) alpha_method) ===> op =) (\<lambda>hom_e\<Colon>char list \<times> rmethod \<Rightarrow> 'c.
Bex1_rel (alpha_method ===> op =) (\<lambda>hom_m\<Colon>rmethod \<Rightarrow> 'd.
(
(\<forall>x. hom_o (rVar x) = fvar x) \<and>
(\<forall>d. hom_o (rObj d) = fobj (hom_d d) d) \<and>
(\<forall>a l. hom_o (rInv a l) = fnvk (hom_o a) a l) \<and>
(\<forall>a l m. hom_o (rUpd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
(\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
(hom_d [] = fnil) \<and>
(\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
(\<forall>x a. hom_m (rSig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)
))))"
sorry
lemma liftd'': "
\<exists>!hom_o. \<exists>!hom_d. \<exists>!hom_e. \<exists>!hom_m.
(
(\<forall>x. hom_o (Var x) = fvar x) \<and>
(\<forall>d. hom_o (Obj d) = fobj (hom_d d) d) \<and>
(\<forall>a l. hom_o (Inv a l) = fnvk (hom_o a) a l) \<and>
(\<forall>a l m. hom_o (Upd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
(\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
(hom_d [] = fnil) \<and>
(\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
(\<forall>x a. hom_m (Sig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
apply (lifting tolift'')
done
end