With restricted_nominal=1, exp7 and exp8 work. Not sure about proving bn_rsp there.
theory AbsRepTest
imports "../Quotient" "../Quotient_List" "../Quotient_Option" "../Quotient_Sum" "../Quotient_Product" List
begin
(*
ML_command "ProofContext.debug := false"
ML_command "ProofContext.verbose := false"
*)
ML {* open Quotient_Term *}
ML {*
fun test_funs flag ctxt (rty, qty) =
(absrep_fun_chk flag ctxt (rty, qty)
|> Syntax.string_of_term ctxt
|> writeln;
equiv_relation_chk ctxt (rty, qty)
|> Syntax.string_of_term ctxt
|> writeln)
*}
definition
erel1 (infixl "\<approx>1" 50)
where
"erel1 \<equiv> \<lambda>xs ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
quotient_type
'a fset = "'a list" / erel1
apply(rule equivpI)
unfolding erel1_def reflp_def symp_def transp_def
by auto
definition
erel2 (infixl "\<approx>2" 50)
where
"erel2 \<equiv> \<lambda>(xs::('a * 'a) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
quotient_type
'a foo = "('a * 'a) list" / erel2
apply(rule equivpI)
unfolding erel2_def reflp_def symp_def transp_def
by auto
definition
erel3 (infixl "\<approx>3" 50)
where
"erel3 \<equiv> \<lambda>(xs::('a * int) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
quotient_type
'a bar = "('a * int) list" / "erel3"
apply(rule equivpI)
unfolding erel3_def reflp_def symp_def transp_def
by auto
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infixl "\<approx>4" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient_type myint = "nat \<times> nat" / intrel
by (auto simp add: equivp_def expand_fun_eq)
ML {*
test_funs AbsF @{context}
(@{typ "nat \<times> nat"},
@{typ "myint"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "('a * 'a) list"},
@{typ "'a foo"})
*}
ML {*
test_funs RepF @{context}
(@{typ "(('a * 'a) list * 'b)"},
@{typ "('a foo * 'b)"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "(('a list) * int) list"},
@{typ "('a fset) bar"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "('a list)"},
@{typ "('a fset)"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "('a list) list"},
@{typ "('a fset) fset"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "((nat * nat) list) list"},
@{typ "((myint) fset) fset"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "(('a * 'a) list) list"},
@{typ "(('a * 'a) fset) fset"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "(nat * nat) list"},
@{typ "myint fset"})
*}
ML {*
test_funs AbsF @{context}
(@{typ "('a list) list \<Rightarrow> 'a list"},
@{typ "('a fset) fset \<Rightarrow> 'a fset"})
*}
lemma OO_sym_inv:
assumes sr: "symp r"
and ss: "symp s"
shows "(r OO s) x y = (s OO r) y x"
using sr ss
unfolding symp_def
apply (metis pred_comp.intros pred_compE ss symp_def)
done
lemma abs_o_rep:
assumes a: "Quotient r absf repf"
shows "absf o repf = id"
apply(rule ext)
apply(simp add: Quotient_abs_rep[OF a])
done
lemma set_in_eq: "(\<forall>e. ((e \<in> A) \<longleftrightarrow> (e \<in> B))) \<equiv> A = B"
apply (rule eq_reflection)
apply auto
done
lemma map_rel_cong: "b \<approx>1 ba \<Longrightarrow> map f b \<approx>1 map f ba"
unfolding erel1_def
apply(simp only: set_map set_in_eq)
done
lemma quotient_compose_list_gen_pre:
assumes a: "equivp r2"
and b: "Quotient r2 abs2 rep2"
shows "(list_rel r2 OOO op \<approx>1) r s =
((list_rel r2 OOO op \<approx>1) r r \<and> (list_rel r2 OOO op \<approx>1) s s \<and>
abs_fset (map abs2 r) = abs_fset (map abs2 s))"
apply rule
apply rule
apply rule
apply (rule list_rel_refl)
apply (metis equivp_def a)
apply rule
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis equivp_def a)
apply(rule)
apply rule
apply (rule list_rel_refl)
apply (metis equivp_def a)
apply rule
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis equivp_def a)
apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s")
apply (metis Quotient_rel[OF Quotient_fset])
apply (auto)[1]
apply (subgoal_tac "map abs2 r = map abs2 b")
prefer 2
apply (metis Quotient_rel[OF list_quotient[OF b]])
apply (subgoal_tac "map abs2 s = map abs2 ba")
prefer 2
apply (metis Quotient_rel[OF list_quotient[OF b]])
apply (simp add: map_rel_cong)
apply rule
apply (rule rep_abs_rsp[of "list_rel r2" "map abs2"])
apply (rule list_quotient)
apply (rule b)
apply (rule list_rel_refl)
apply (metis equivp_def a)
apply rule
prefer 2
apply (rule rep_abs_rsp_left[of "list_rel r2" "map abs2"])
apply (rule list_quotient)
apply (rule b)
apply (rule list_rel_refl)
apply (metis equivp_def a)
apply (erule conjE)+
apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s")
apply (rule map_rel_cong)
apply (assumption)
apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp a b)
done
lemma quotient_compose_list_gen:
assumes a: "Quotient r2 abs2 rep2"
and b: "equivp r2" (* reflp is not enough *)
shows "Quotient ((list_rel r2) OOO (op \<approx>1))
(abs_fset \<circ> (map abs2)) ((map rep2) \<circ> rep_fset)"
unfolding Quotient_def comp_def
apply (rule)+
apply (simp add: abs_o_rep[OF a] id_simps Quotient_abs_rep[OF Quotient_fset])
apply (rule)
apply (rule)
apply (rule)
apply (rule list_rel_refl)
apply (metis b equivp_def)
apply (rule)
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis b equivp_def)
apply rule
apply rule
apply(rule quotient_compose_list_gen_pre[OF b a])
done
(* This is the general statement but the types of abs2 and rep2
are wrong as can be seen in following exanples *)
lemma quotient_compose_general:
assumes a2: "Quotient r1 abs1 rep1"
and "Quotient r2 abs2 rep2"
shows "Quotient ((list_rel r2) OOO r1)
(abs1 \<circ> (map abs2)) ((map rep2) \<circ> rep1)"
sorry
thm quotient_compose_list_gen[OF Quotient_fset fset_equivp]
thm quotient_compose_general[OF Quotient_fset]
(* Doesn't work: *)
(* thm quotient_compose_general[OF Quotient_fset Quotient_fset] *)
end