(* Title: nominal_library.ML
Author: Christian Urban
Basic functions for nominal.
*)
signature NOMINAL_LIBRARY =
sig
val last2: 'a list -> 'a * 'a
val dest_listT: typ -> typ
val mk_minus: term -> term
val mk_plus: term -> term -> term
val perm_ty: typ -> typ
val mk_perm_ty: typ -> term -> term -> term
val mk_perm: term -> term -> term
val dest_perm: term -> term * term
val mk_sort_of: term -> term
val atom_ty: typ -> typ
val mk_atom_ty: typ -> term -> term
val mk_atom: term -> term
val supp_ty: typ -> typ
val supp_const: typ -> term
val mk_supp_ty: typ -> term -> term
val mk_supp: term -> term
val mk_equiv: thm -> thm
val safe_mk_equiv: thm -> thm
val mk_diff: term * term -> term
val mk_append: term * term -> term
val mk_union: term * term -> term
val fold_union: term list -> term
val mk_conj: term * term -> term
val fold_conj: term list -> term
(* datatype operations *)
val all_dtyps: Datatype_Aux.descr -> (string * sort) list -> typ list
val nth_dtyp: Datatype_Aux.descr -> (string * sort) list -> int -> typ
val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list ->
(term * typ * typ list * bool list) list list
val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int ->
(term * typ * typ list * bool list) list
val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list
(* tactics for function package *)
val pat_completeness_auto: Proof.context -> tactic
val pat_completeness_simp: thm list -> Proof.context -> tactic
val prove_termination: Proof.context -> Function.info * local_theory
(* transformations of premises in inductions *)
val transform_prem1: Proof.context -> string list -> thm -> thm
val transform_prem2: Proof.context -> string list -> thm -> thm
(* transformation into the object logic *)
val atomize: thm -> thm
end
structure Nominal_Library: NOMINAL_LIBRARY =
struct
fun last2 [] = raise Empty
| last2 [_] = raise Empty
| last2 [x, y] = (x, y)
| last2 (_ :: xs) = last2 xs
fun dest_listT (Type (@{type_name list}, [T])) = T
| dest_listT T = raise TYPE ("dest_listT: list type expected", [T], [])
fun mk_minus p = @{term "uminus::perm => perm"} $ p;
fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q;
fun perm_ty ty = @{typ "perm"} --> ty --> ty;
fun mk_perm_ty ty p trm = Const (@{const_name "permute"}, perm_ty ty) $ p $ trm;
fun mk_perm p trm = mk_perm_ty (fastype_of trm) p trm;
fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t)
| dest_perm t = raise TERM ("dest_perm", [t]);
fun mk_sort_of t = @{term "sort_of"} $ t;
fun atom_ty ty = ty --> @{typ "atom"};
fun mk_atom_ty ty t = Const (@{const_name "atom"}, atom_ty ty) $ t;
fun mk_atom t = mk_atom_ty (fastype_of t) t;
fun supp_ty ty = ty --> @{typ "atom set"};
fun supp_const ty = Const (@{const_name "supp"}, supp_ty ty)
fun mk_supp_ty ty t = supp_const ty $ t;
fun mk_supp t = mk_supp_ty (fastype_of t) t;
fun mk_equiv r = r RS @{thm eq_reflection};
fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r;
(* functions that construct differences, appends and unions
but avoid producing empty atom sets or empty atom lists *)
fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"}
| mk_diff (t1, @{term "{}::atom set"}) = t1
| mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2)
fun mk_append (t1, @{term "[]::atom list"}) = t1
| mk_append (@{term "[]::atom list"}, t2) = t2
| mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2)
fun mk_union (t1, @{term "{}::atom set"}) = t1
| mk_union (@{term "{}::atom set"}, t2) = t2
| mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2)
fun fold_union trms = fold_rev (curry mk_union) trms @{term "{}::atom set"}
fun mk_conj (t1, @{term "True"}) = t1
| mk_conj (@{term "True"}, t2) = t2
| mk_conj (t1, t2) = HOLogic.mk_conj (t1, t2)
fun fold_conj trms = fold_rev (curry mk_conj) trms @{term "True"}
(** datatypes **)
(* returns the type of the nth datatype *)
fun all_dtyps descr sorts =
map (fn n => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n)) (0 upto (length descr - 1))
fun nth_dtyp descr sorts n =
Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n);
(* returns info about constructors in a datatype *)
fun all_dtyp_constrs_info descr =
map (fn (_, (ty, vs, constrs)) => map (pair (ty, vs)) constrs) descr
(* returns the constants of the constructors plus the
corresponding type and types of arguments *)
fun all_dtyp_constrs_types descr sorts =
let
fun aux ((ty_name, vs), (cname, args)) =
let
val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs
val ty = Type (ty_name, vs_tys)
val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args
val is_rec = map Datatype_Aux.is_rec_type args
in
(Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec)
end
in
map (map aux) (all_dtyp_constrs_info descr)
end
fun nth_dtyp_constrs_types descr sorts n =
nth (all_dtyp_constrs_types descr sorts) n
(* generates for every datatype a name str ^ dt_name
plus and index for multiple occurences of a string *)
fun prefix_dt_names descr sorts str =
let
fun get_nth_name (i, _) =
Datatype_Aux.name_of_typ (nth_dtyp descr sorts i)
in
Datatype_Prop.indexify_names
(map (prefix str o get_nth_name) descr)
end
(** function package tactics **)
fun pat_completeness_auto lthy =
Pat_Completeness.pat_completeness_tac lthy 1
THEN auto_tac (clasimpset_of lthy)
fun pat_completeness_simp simps lthy =
let
val simp_set = HOL_basic_ss addsimps (@{thms sum.inject sum.distinct} @ simps)
in
Pat_Completeness.pat_completeness_tac lthy 1
THEN ALLGOALS (asm_full_simp_tac simp_set)
end
fun prove_termination lthy =
Function.prove_termination NONE
(Lexicographic_Order.lexicographic_order_tac true lthy) lthy
(** transformations of premises (in inductive proofs) **)
(*
given the theorem F[t]; proves the theorem F[f t]
- F needs to be monotone
- f returns either SOME for a term it fires on
and NONE elsewhere
*)
fun map_term f t =
(case f t of
NONE => map_term' f t
| x => x)
and map_term' f (t $ u) =
(case (map_term f t, map_term f u) of
(NONE, NONE) => NONE
| (SOME t'', NONE) => SOME (t'' $ u)
| (NONE, SOME u'') => SOME (t $ u'')
| (SOME t'', SOME u'') => SOME (t'' $ u''))
| map_term' f (Abs (s, T, t)) =
(case map_term f t of
NONE => NONE
| SOME t'' => SOME (Abs (s, T, t'')))
| map_term' _ _ = NONE;
fun map_thm_tac ctxt tac thm =
let
val monos = Inductive.get_monos ctxt
val simps = HOL_basic_ss addsimps @{thms split_def}
in
EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
REPEAT_DETERM (FIRSTGOAL (simp_tac simps THEN' resolve_tac monos)),
REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
end
fun map_thm ctxt f tac thm =
let
val opt_goal_trm = map_term f (prop_of thm)
in
case opt_goal_trm of
NONE => thm
| SOME goal =>
Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
end
(*
inductive premises can be of the form
R ... /\ P ...; split_conj_i picks out
the part R or P part
*)
fun split_conj1 names (Const ("op &", _) $ f1 $ f2) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f1 else NONE
| _ => NONE)
| split_conj1 _ _ = NONE;
fun split_conj2 names (Const ("op &", _) $ f1 $ f2) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f2 else NONE
| _ => NONE)
| split_conj2 _ _ = NONE;
fun transform_prem1 ctxt names thm =
map_thm ctxt (split_conj1 names) (etac conjunct1 1) thm
fun transform_prem2 ctxt names thm =
map_thm ctxt (split_conj2 names) (etac conjunct2 1) thm
(* transformes a theorem into one of the object logic *)
val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
end (* structure *)
open Nominal_Library;